【題目】如圖1,兩點(diǎn)的坐標(biāo)分別為,,且滿足,的坐標(biāo)為

1)判斷的形狀.

2)動(dòng)點(diǎn)從點(diǎn)出發(fā),以個(gè)單位/的速度在線段上運(yùn)動(dòng),另一動(dòng)點(diǎn)從點(diǎn)出發(fā),以個(gè)單位/的速度在射線上運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為.

①如圖2,若,直線軸于,當(dāng)時(shí),求的值.

②如圖3,若,當(dāng)運(yùn)動(dòng)到中點(diǎn)時(shí),上一點(diǎn),連,作.試探究的數(shù)量關(guān)系,并給出證明.

【答案】1為等腰三角形;(2)①6.5s;②AM=CN,證明見(jiàn)解析.

【解析】

1)作CDABD,根據(jù)非負(fù)數(shù)的性質(zhì)求出ab的值,根據(jù)A、B、C的坐標(biāo)可得AD=DB,根據(jù)線段垂直平分線的性質(zhì)即可得為等腰三角形;

2)①作PEBCABE,證明△PEH≌△QBH,則PE=BQ,根據(jù)等腰三角形及平行線的性質(zhì)∠PEA=PAE,得出PA=BQ,根據(jù)線段的相等關(guān)系列出關(guān)于t的方程,解方程即可;

②延長(zhǎng)CMABF,先由點(diǎn)C、M的坐標(biāo)得出CMAB,根據(jù)坐標(biāo)求出AF=CF=BF,推出∠ACB=90°,可求得∠CAB=ABC=ACF=45°,證出△BCN≌△CAM即可得出結(jié)論.

解:(1)作CDABD,

,

a+2=0,b-8=0

a=-2,b=8,

的坐標(biāo)為,

OD=3,

AD=BD=5,

CD為線段AB的垂直平分線,

AC=BC,

為等腰三角形;

2)①作PEBCABE

PEBC,

∴∠EPH=BQH,∠PEA=ABC

又∵,∠EHP=BHQ

∴△PEH≌△QBH,

PE=BQ,

AC=BC

∴∠CAB=ABC,

∴∠CAB=PEA,

PA=PE,

PA=BQ

由題意得:PA=t,CQ=3t,,

t=3t-13,解得:t=6.5s;

AM=CN

證明:延長(zhǎng)CMABF,

C3,5),

CMAB,M3,0),CF=5,

A-2,0),B8,0),

AF=CF=BF

∴∠CAF=ACF,∠BCF=CBF,

∴∠ACB=90°,

AC=BC

∴∠CAB=ABC=ACF=45°,

,∠ACB=90°,

∴∠CQA+BCN=CQA+CAM,

∴∠BCN=CAM,

在△BCN和△CAM

∴△BCN≌△CAM,

AM=CN.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,銳角中,,若想找一點(diǎn)P,使得互補(bǔ),甲、乙、丙三人作法分別如下:

甲:以B為圓心,AB長(zhǎng)為半徑畫弧交ACP點(diǎn),則P即為所求;

乙:分別以B,C為圓心,AB,AC長(zhǎng)為半徑畫弧交于P點(diǎn),則P即為所求;

丙:作BC的垂直平分線和的平分線,兩線交于P點(diǎn),則P即為所求.

對(duì)于甲、乙、丙三人的作法,下列敘述正確的是  

A. 三人皆正確B. 甲、丙正確,乙錯(cuò)誤

C. 甲正確,乙、丙錯(cuò)誤D. 甲錯(cuò)誤,乙、丙正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,AB=12ACAB,BDAB,AC=BD=8點(diǎn)P在線段AB上以每秒2個(gè)單位的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由B點(diǎn)向點(diǎn)D運(yùn)動(dòng)。它們的運(yùn)動(dòng)時(shí)間為t(s).

1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),ACPBPQ是否全等,請(qǐng)說(shuō)明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;

2)如圖2,將圖1中的ACAB,BDAB改為CAB=DBA=60°”,其他條件不變。設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為每秒x個(gè)單位,是否存在實(shí)數(shù)x,使得ACPBPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=AC=8,BAC=90,直線l與以AB為直徑的⊙O相切于點(diǎn)B,點(diǎn)D是直線l上任意一動(dòng)點(diǎn),連結(jié)DA交⊙O點(diǎn)E.

(1)當(dāng)點(diǎn)DAB上方且BD=6時(shí),求AE的長(zhǎng);

(2)當(dāng)CE恰好與⊙O相切時(shí),求BD的長(zhǎng)為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(。┲,對(duì)于任意正實(shí)數(shù)a、b,可作如下變形a+b==-2+2=+2,又∵≥0, +2≥0+ 2,即a+b ≥2

(1)根據(jù)上述內(nèi)容,回答下列問(wèn)題:在a+b≥2(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥ 2,當(dāng)且僅當(dāng)a、b滿足________時(shí),a+b有最小值2

(2)思考驗(yàn)證:如圖1,ABC中,∠ACB=90°,CDAB,垂足為D,COAB邊上中線,AD=2a ,DB=2b, 試根據(jù)圖形驗(yàn)證a+b≥2成立,并指出等號(hào)成立時(shí)的條件.

(3)探索應(yīng)用:如圖2,已知A為反比例函數(shù)的圖象上一點(diǎn),A點(diǎn)的橫坐標(biāo)為1,將一塊三角板的直角頂點(diǎn)放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點(diǎn)D、E,F(xiàn)(0,-3)為y軸上一點(diǎn),連接DF、EF,求四邊形ADFE面積的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,∠C=90°,B=30°,邊AB的垂直平分線DEAB于點(diǎn)E,交BC于點(diǎn)D.CD=3,則BC的長(zhǎng)為(

A. 6 B. 9 C. 6 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,的垂直平分線于點(diǎn),交于點(diǎn),且,添加一個(gè)條件,能證明四邊形為正方形的是________

;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),ECOB,EDOAC、D是垂足,連接CD,且交OE于點(diǎn)F.

1)求證:DF=CF.

2)若∠AOB=60,請(qǐng)你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,點(diǎn)O是△ABC內(nèi)一點(diǎn),且點(diǎn)O到△ABC三個(gè)頂點(diǎn)的距離相等,若∠A70°,則∠BOC_____________

查看答案和解析>>

同步練習(xí)冊(cè)答案