【題目】若ax=2,ay=3,則a2x+y=_____

【答案】12

【解析】試題解析:由題意,得:a2x=(ax2=4,

a2x+y=a2x×ay=4×3=12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把一塊長80㎜、寬60㎜的鐵皮的4個角分別剪去一個邊長相等的小正方形,做成一個底面積是1500㎜2的無蓋鐵盒。若設(shè)小正方形的邊長為x㎜,下面所列的方程中,正確的是( ).

A.(80-x)(60-x)=1500

B.(80-2x)(60-2x)=1500

C.(80-2x)(60-x)=1500

D.(80-x)(60-2x)=1500

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A (1,0)、B(0,3)及C(3,0)點(diǎn),動點(diǎn)D從原點(diǎn)O開始沿OB方向以每秒1個單位長度移動,動點(diǎn)E從點(diǎn)C開始沿CO方向以每秒1個長度單位移動,動點(diǎn)D、E同時出發(fā),當(dāng)動點(diǎn)E到達(dá)原點(diǎn)O時,點(diǎn)D、E停止運(yùn)動.

(1)求拋物線的解析式及頂點(diǎn)P的坐標(biāo);

(2)若F(﹣1,0),求DEF的面積S與E點(diǎn)運(yùn)動時間t的函數(shù)解析式;當(dāng)t為何值時,DEF的面積最大?最大面積是多少?

(3)當(dāng)DEF的面積最大時,拋物線的對稱軸上是否存在一點(diǎn)N,使EBN是直角三角形?若存在,求出N點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

(1)

(2)(﹣a)2 a4÷a3

(3)(2x﹣1)(x﹣3)

(4)(3x﹣2y)2(3x+2y)2

(5)(x﹣2y+4)(x﹣2y﹣4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=﹣x2+bx+c與x軸交于點(diǎn)A,B,與y軸交于點(diǎn)C,直線y=x+4經(jīng)過A,C兩點(diǎn).

(1)求拋物線的解析式;

(2)在AC上方的拋物線上有一動點(diǎn)P.

①如圖1,當(dāng)點(diǎn)P運(yùn)動到某位置時,以AP,AO為鄰邊的平行四邊形第四個頂點(diǎn)恰好也在拋物線上,求出此時點(diǎn)P的坐標(biāo);

②如圖2,過點(diǎn)O,P的直線y=kx交AC于點(diǎn)E,若PE:OE=3:8,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個三角形的兩邊長為3和6,若第三邊取奇數(shù),則此三角形的周長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將ABC經(jīng)過一次平移后得到A′B′C′,圖中標(biāo)出了點(diǎn)B的對應(yīng)點(diǎn)B′.

(1)在給定方格紙中畫出平移后的A′B′C′;

(2)畫出AB邊上的中線CD和BC邊上的高線AE;

(3)線段AA′與線段BB′的關(guān)系是: ;

(4)求A′B′C′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AC平分,于E,于F,

1求證:

2,求AE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個正方形的邊長增加3cm,它的面積就增加45cm2,則這個正方形的邊長是___

查看答案和解析>>

同步練習(xí)冊答案