【題目】計(jì)算
(1)
(2)(﹣a)2 a4÷a3
(3)(2x﹣1)(x﹣3)
(4)(3x﹣2y)2(3x+2y)2
(5)(x﹣2y+4)(x﹣2y﹣4)
【答案】(1)﹣5;(2)a3;(3)2x2﹣7x+3;(4)9x2﹣4y2)2(5)x2﹣4xy+4y2﹣16
【解析】
試題分析:(1)根據(jù)有理數(shù)的乘方法則、負(fù)整數(shù)指數(shù)冪的定義和零指數(shù)冪的定義計(jì)算,再合并即可;
(2)根據(jù)同底數(shù)冪的乘除法法則計(jì)算即可;
(3)根據(jù)多項(xiàng)式與多項(xiàng)式相乘的法則計(jì)算,再合并即可;
(4)先運(yùn)用平方差公式計(jì)算,再運(yùn)用完全平方公式計(jì)算即可;
(5)先運(yùn)用平方差公式計(jì)算,再運(yùn)用完全平方公式計(jì)算即可.
解:(1)
=﹣4﹣2+1
=﹣5;
(2)(﹣a)2a4÷a3
=a2a4÷a3
=a3;
(3)(2x﹣1)(x﹣3)
=2x2﹣6x﹣x+3
=2x2﹣7x+3;
(4)(3x﹣2y)2(3x+2y)2
=[(3x﹣2y)(3x+2y)]2
=(9x2﹣4y2)2
=81x4﹣72x2y2+16y4
(5)(x﹣2y+4)(x﹣2y﹣4)
=(x﹣2y)2﹣42
=x2﹣4xy+4y2﹣16
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.動點(diǎn)P從點(diǎn)B出發(fā),沿射線BC的方向以每秒2個單位長的速度運(yùn)動,動點(diǎn)Q同時從點(diǎn)A出發(fā),在線段AD上以每秒1個單位長的速度向點(diǎn)D運(yùn)動,當(dāng)其中一個動點(diǎn)到達(dá)端點(diǎn)時另一個動點(diǎn)也隨之停止運(yùn)動.設(shè)運(yùn)動的時間為t(秒).
(1)設(shè)△DPQ的面積為S,用含有t的代數(shù)式表示S.
(2)當(dāng)t為何值時,四邊形PCDQ是平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】順次連接圓內(nèi)兩條相交直徑的4個端點(diǎn),圍成的四邊形一定是( ).
A.梯形 B.菱形 C.矩形 D.正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明坐于堤邊垂釣,如圖,河堤AC的坡角為30°,AC長2,釣竿AO的傾斜角∠ODC是60°,其長OA為5米,若AO與釣魚線OB的夾角為60°,求浮漂B與河堤下端C之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知MB=ND,∠MBA=∠NDC,下列條件中不能判定△ABM≌△CDN的是( )
A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD中,∠A=145°,∠D=75°.
(1)如圖1,若∠B=∠C,試求出∠C的度數(shù);
(2)如圖2,若∠ABC的角平分線BE交DC于點(diǎn)E,且BE∥AD,試求出∠C的度數(shù);
(3)如圖3,若∠ABC和∠BCD的角平分線交于點(diǎn)E,試求出∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】連接邊長為1的正方形對邊中點(diǎn),可將一個正方形分成四個全等的小正方形,選右下角的小正方形進(jìn)行第二次操作,又可將這個小正方形分成四個更小的小正方形,…重復(fù)這樣的操作,則2004次操作后右下角的小正方形面積是( )
A. B.()2004 C.()2004 D.1﹣()2004
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com