【題目】拋物線(xiàn)與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸正半軸交于點(diǎn)C.
(1)如圖1,若A(-1,0),B(3,0),
① 求拋物線(xiàn)的解析式;
② P為拋物線(xiàn)上一點(diǎn),連接AC,PC,若∠PCO=3∠ACO,求點(diǎn)P的橫坐標(biāo);
(2)如圖2,D為x軸下方拋物線(xiàn)上一點(diǎn),連DA,DB,若∠BDA+2∠BAD=90°,求點(diǎn)D的縱坐標(biāo).
【答案】(1)①y=-x2+2x+3②(2)-1
【解析】(1)①把A、B的坐標(biāo)代入解析式,解方程組即可得到結(jié)論;
②延長(zhǎng)CP交x軸于點(diǎn)E,在x軸上取點(diǎn)D使CD=CA,作EN⊥CD交CD的延長(zhǎng)線(xiàn)于N.由CD=CA ,OC⊥AD,得到∠DCO=∠ACO.由∠PCO=3∠ACO,得到∠ACD=∠ECD,從而有tan∠ACD=tan∠ECD,
,即可得出AI、CI的長(zhǎng),進(jìn)而得到.設(shè)EN=3x,則CN=4x,由tan∠CDO=tan∠EDN,得到,故設(shè)DN=x,則CD=CN-DN=3x=,解方程即可得出E的坐標(biāo),進(jìn)而求出CE的直線(xiàn)解析式,聯(lián)立解方程組即可得到結(jié)論;
(2)作DI⊥x軸,垂足為I.可以證明△EBD∽△DBC,由相似三角形對(duì)應(yīng)邊成比例得到,
即,整理得.令y=0,得:.
故,從而得到.由,得到,解方程即可得到結(jié)論.
(1)①把A(-1,0),B(3,0)代入得:
,解得:,
∴
②延長(zhǎng)CP交x軸于點(diǎn)E,在x軸上取點(diǎn)D使CD=CA,作EN⊥CD交CD的延長(zhǎng)線(xiàn)于N.
∵CD=CA ,OC⊥AD,∴ ∠DCO=∠ACO.
∵∠PCO=3∠ACO,∴∠ACD=∠ECD,∴tan∠ACD=tan∠ECD,
∴,AI=,
∴CI=,∴.
設(shè)EN=3x,則CN=4x.
∵tan∠CDO=tan∠EDN,
∴,∴DN=x,∴CD=CN-DN=3x=,
∴,∴DE= ,E(,0).
CE的直線(xiàn)解析式為:,
,解得:.
點(diǎn)P的橫坐標(biāo) .
(2)作DI⊥x軸,垂足為I.
∵∠BDA+2∠BAD=90°,∴∠DBI+∠BAD=90°.
∵∠BDI+∠DBI=90°,∴∠BAD=∠BDI.
∵∠BID=∠DIA,∴△EBD∽△DBC,∴,
∴,
∴.
令y=0,得:.
∴,∴.
∵,
∴,
解得:yD=0或-1.
∵D為x軸下方一點(diǎn),
∴,
∴D的縱坐標(biāo)-1 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,DM垂直平分AC,交BC于點(diǎn)D,連接AD,若∠C=28°,AB=BD,則∠B的度數(shù)為_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=40°,點(diǎn)D在線(xiàn)段BC上運(yùn)動(dòng)(D不與B、C重合),連接AD,作∠ADE=40°,DE交線(xiàn)段AC于E點(diǎn).
(1)當(dāng)∠BDA=115°時(shí),∠BAD=___°,∠DEC=___°;
(2)當(dāng)DC等于多少時(shí),△ABD與△DCE全等?請(qǐng)說(shuō)明理由;
(3)在點(diǎn)D的運(yùn)動(dòng)過(guò)程中,△ADE的形狀可以是等腰三角形嗎?若可以,請(qǐng)直接寫(xiě)出∠BDA的度數(shù);若不可以,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線(xiàn)AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長(zhǎng)為( )
A. 8 B. 8 C. 4 D. 6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了保證端午龍舟賽在我市漢江水域順利舉辦,某部門(mén)工作人員乘快艇到漢江水域考察水情,以每秒10米的速度沿平行于岸邊的賽道AB由西向東行駛.在A處測(cè)得岸邊一建筑物P在北偏東30°方向上,繼續(xù)行駛40秒到達(dá)B處時(shí),測(cè)得建筑物P在北偏西60°方向上,如圖所示,求建筑物P到賽道AB的距離(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=15,點(diǎn)D是邊BC上一動(dòng)點(diǎn)(不與B、C重合),∠ADE=∠B=α,DE交AC于點(diǎn)E,且tanα=有以下的結(jié)論:① △ADE∽△ACD;② 當(dāng)CD=9時(shí),△ACD與△DBE全等;③ △BDE為直角三角形時(shí),BD為12或;④ 0<BE≤,其中正確的結(jié)論是___________(填入正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于圓,對(duì)角線(xiàn)AC與BD相交于點(diǎn)E,F(xiàn)在AC上,AB=AD,∠BFC=∠BAD=2∠DFC.
求證:
(1)CD⊥DF;
(2)BC=2CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】李明到離家2.1千米的學(xué)校參加初三聯(lián)歡會(huì),到學(xué)校時(shí)發(fā)現(xiàn)演出道具還放在家中,此時(shí)距聯(lián)歡會(huì)開(kāi)始還有42分鐘,于是他立即勻速步行回家,在家拿道具用了1分鐘,然后立即勻速騎自行車(chē)返回學(xué)校.已知李明騎自行車(chē)到學(xué)校比他從學(xué)校步行到家用時(shí)少20分鐘,且騎自行車(chē)的速度是步行速度的3倍.
(1)李明步行的速度(單位:米/分)是多少?
(2)李明能否在聯(lián)歡會(huì)開(kāi)始前趕到學(xué)校?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,∠BAC=90°,AB=2AC,點(diǎn)A(2,0)、B(0,4),點(diǎn)C在第一象限內(nèi),雙曲線(xiàn)y=(x>0)經(jīng)過(guò)點(diǎn)C.將△ABC沿y軸向上平移m個(gè)單位長(zhǎng)度,使點(diǎn)A恰好落在雙曲線(xiàn)上,則m的值為________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com