【題目】如圖,在ABC中,AB=AC=2,B=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作ADE=40°,DE交線段ACE點.

1)當(dāng)BDA=115°時,BAD=___°,DEC=___°;

2)當(dāng)DC等于多少時,ABDDCE全等?請說明理由;

3)在點D的運動過程中,ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出BDA的度數(shù);若不可以,請說明理由.

【答案】1 25115;(2)當(dāng)DC=2時,ABDDCE,理由見解析;(3)可以;當(dāng)∠BDA的度數(shù)為110°或80°時,ADE的形狀是等腰三角形.

【解析】

1)根據(jù)三角形內(nèi)角和定理,將已知數(shù)值代入即可求出,根據(jù)平角的定義,可求出的度數(shù),根據(jù)三角形內(nèi)和定理,即可求出

2)當(dāng)時,利用可證明,即可得出

3)假設(shè)是等腰三角形,分為三種情況討論:①當(dāng)時,,根據(jù),得出此時不符合;②當(dāng)時,求出,求出,根據(jù)三角形的內(nèi)角和定理求出,根據(jù)三角形的內(nèi)角和定理求出即可;③當(dāng)時,求出,求出,根據(jù)三角形的內(nèi)角和定理求出

1)在中, ,,,

,,

故答案為:,;

2)當(dāng)時,.理由如下:

,,又,,

中,,當(dāng)時,;

3,,分三種情況討論:

①當(dāng)時,,此時不符合;

②當(dāng)時,即,;

③當(dāng)時,,;

當(dāng)時,是等腰三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸的交點為,與軸的交點分別為,,且,直線軸,在軸上有一動點過點作平行于軸的直線與拋物線、直線的交點分別為、

求拋物線的解析式;

當(dāng)時,求面積的最大值;

當(dāng)時,是否存在點,使以、、為頂點的三角形與相似?若存在,求出此時的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=m1x+3的圖像與x軸的負半軸相交于點A,與y軸相交于點B,且△OAB面積為.

1)求m的值及點A的坐標(biāo);

2)過點B作直線BPx軸的正半軸相交于點P,且OP=2OA,求直線BP的函數(shù)表達式 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店銷售A型和B型兩種電腦,其中A型電腦每臺的利潤為400元,B型電腦每臺的利潤為500元.該商店計劃再一次性購進兩種型號的電腦共100臺,其中B型電腦的進貨量不超過A型電腦的2倍,設(shè)購進A型電腦x臺,這100臺電腦的銷售總利潤為y元.

(1)求y關(guān)于x的函數(shù)關(guān)系式;

(2)該商店購進A型、B型電腦各多少臺,才能使銷售總利潤最大,最大利潤是多少?

(3)實際進貨時,廠家對A型電腦出廠價下調(diào)a(0<a<200)元,且限定商店最多購進A型電腦60臺,若商店保持同種電腦的售價不變,請你根據(jù)以上信息,設(shè)計出使這100臺電腦銷售總利潤最大的進貨方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10如圖,已知ABC為等邊三角形,點D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點F。

1求證:ABE≌△CAD;2BFD的度數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=6AB=10,點D是邊BC上一點.若沿ADACD翻折,點C剛好落在AB邊上點E處,則AD= _______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個不透明的盒子里,裝有三個分別寫有數(shù)字6,﹣2,7的小球,它們的形狀、大小、質(zhì)地等完全相同,先從盒子里隨機取出一個小球,記下數(shù)字后放回盒子,搖勻后再隨機取出一個小球,記下數(shù)字.請你用畫樹形圖或列表的方法,求下列事件的概率:

(1)兩次取出小球上的數(shù)字相同的概率;

(2)兩次取出小球上的數(shù)字之和大于10的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=90°,AB=BC,點E是直線BC上一點,連接AE,過點CCFAE于點F,連接BF.如圖①,當(dāng)點EBC上時,易證AF﹣CF=BF(不需證明),點ECB的延長線上,如圖②:點EBC的延長線上,如圖③,線段AF,CF,BF之間又有怎樣的數(shù)量關(guān)系?請直接寫出你的猜想,并選擇一種情況給予證明.

查看答案和解析>>

同步練習(xí)冊答案