【題目】如圖,在△ABC中,AB=AC=15,點D是邊BC上一動點(不與B、C重合),∠ADE=∠B=α,DE交AC于點E,且tanα=有以下的結論:① △ADE∽△ACD;② 當CD=9時,△ACD與△DBE全等;③ △BDE為直角三角形時,BD為12或;④ 0<BE≤,其中正確的結論是___________(填入正確結論的序號)
【答案】②③.
【解析】
試題解析:①∵∠ADE=∠B,∠DAE=∠BAD,
∴△ADE∽△ABD;
故①錯誤;
②作AG⊥BC于G,
∵∠ADE=∠B=α,tan∠α=,
∴,
∴,
∴cosα=,
∵AB=AC=15,
∴BG=12,
∴BC=24,
∵CD=9,
∴BD=15,
∴AC=BD.
∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,
∴∠EDB=∠DAC,
在△ACD與△DBE中,
,
∴△ACD≌△BDE(ASA).
故②正確;
③當∠BED=90°時,由①可知:△ADE∽△ABD,
∴∠ADB=∠AED,
∵∠BED=90°,
∴∠ADB=90°,
即AD⊥BC,
∵AB=AC,
∴BD=CD,
∴∠ADE=∠B=α且tan∠α=,AB=15,
∴
∴BD=12.
當∠BDE=90°時,易證△BDE∽△CAD,
∵∠BDE=90°,
∴∠CAD=90°,
∵∠C=α且cosα=,AC=15,
∴cosC=,
∴CD=.
∵BC=24,
∴BD=24-=
即當△DCE為直角三角形時,BD=12或.
故③正確;
④易證得△BDE∽△CAD,由②可知BC=24,
設CD=y,BE=x,
∴,
∴,
整理得:y2-24y+144=144-15x,
即(y-12)2=144-15x,
∴0<x≤,
∴0<BE≤.
故④錯誤.
故正確的結論為:②③.
科目:初中數(shù)學 來源: 題型:
【題目】某居民區(qū)的月底統(tǒng)計用電情況如下,其中3戶用電45度,5戶用電50度,6戶用電42度,則平均用電( )度.
A.41
B.42
C.45.5
D.46
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列算式:1×5 + 4 = 32,2×6 + 4 = 42,3×7 + 4 = 52,4×8 + 4 = 62,請你在觀察規(guī)律之后并用你得到的規(guī)律填空:_____×_____+_____=502 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列等式從左到右的變形,屬于因式分解的是( )
A. a(x-y)=ax-ay B. x2-1=(x+1)(x-1)
C. (x+1)(x+3)=x2+4x+3 D. x2+2x+1=x(x+2)+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若關于 x 的方程 x2+bx+a=0 的一個根是-a(a≠0),則 a-b 的值為( )
A. -1 B. 0 C. 1 D. 2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com