【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是邊AB,CD上的點(diǎn),AE=CF,連接EF,BF,EF與對角線AC交于點(diǎn)O,且BE=BF,∠BEF=2∠BAC,F(xiàn)C=2,則AB的長為(  )

A. 8 B. 8 C. 4 D. 6

【答案】D

【解析】分析: 連接OB,根據(jù)等腰三角形三線合一的性質(zhì)可得BO⊥EF,再根據(jù)矩形的性質(zhì)可得OA=OB,根據(jù)等邊對等角的性質(zhì)可得∠BAC=∠ABO,再根據(jù)三角形的內(nèi)角和定理列式求出∠ABO=30°,即∠BAC=30°,根據(jù)直角三角形30°角所對的直角邊等于斜邊的一半求出AC,再利用勾股定理列式計(jì)算即可求出AB.

詳解: 如圖,連接OB,

∵BE=BF,OE=OF,

∴BO⊥EF,

∴在Rt△BEO中,∠BEF+∠ABO=90°,

由直角三角形斜邊上的中線等于斜邊上的一半可知:OA=OB=OC,

∴∠BAC=∠ABO,

又∵∠BEF=2∠BAC,

2∠BAC+∠BAC=90°,

解得∠BAC=30°,

∴∠FCA=30°,

∴∠FBC=30°,

∵FC=2,

∴BC=2,

∴AC=2BC=4

∴AB==6,

故選:D.

點(diǎn)睛: 本題考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),等腰三角形三線合一的性質(zhì),直角三角形30°角所對的直角邊等于斜邊的一半,綜合題,但難度不大,(2)作輔助線并求出∠BAC=30°是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)環(huán)保意識,某社區(qū)計(jì)劃開展一次“減碳環(huán)保,減少用車時間”的宣傳活動,對部分家庭五月份的平均每天用車時間進(jìn)行了一次抽樣調(diào)查,并根據(jù)收集的數(shù)據(jù)繪制了下面兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中提供的信息,解答下列問題:

(1)本次抽樣調(diào)查了多少個家庭?

(2)將圖中的條形圖補(bǔ)充完整,直接寫出用車時間的中位數(shù)落在哪個時間段內(nèi);

(3)求用車時間在1~1.5小時的部分對應(yīng)的扇形圓心角的度數(shù);

(4)若該社區(qū)有車家庭有1600個,請你估計(jì)該社區(qū)用車時間不超過1.5小時的約有多少個家庭?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知正方形ABCD的邊長為1,點(diǎn)E在邊BC上,若∠AEF=90°,且EF交正方形的外角∠DCM的平分線CF于點(diǎn)F

1)圖1中若點(diǎn)E是邊BC的中點(diǎn),我們可以構(gòu)造兩個三角形全等來證明AE=EF,請敘述你的一個構(gòu)造方案,并指出是哪兩個三角形全等(不要求證明);

2)如圖2,若點(diǎn)E在線段BC上滑動(不與點(diǎn)BC重合).

①AE=EF是否一定成立?說出你的理由;

在如圖2所示的直角坐標(biāo)系中拋物線y=ax2+x+c經(jīng)過AD兩點(diǎn),當(dāng)點(diǎn)E滑動到某處時,點(diǎn)F恰好落在此拋物線上,求此時點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

1

2)用公式法解:4x2312x;

3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,九年級(1)班的小明與小艷兩位同學(xué)去操場測量旗桿DE的高度,已知直立在地面上的竹竿AB的長為3 m某一時刻,測得竹竿AB在陽光下的投影BC的長為2 m.

(1)請你在圖中畫出此時旗桿DE在陽光下的投影并寫出畫圖步驟;

(2)在測量竹竿AB的影長時同時測得旗桿DE在陽光下的影長為6 m,請你計(jì)算旗桿DE的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在校園文化藝術(shù)節(jié)中,九年級一班有1名男生和2名女生獲得美術(shù)獎,另有2名男生和2名女生獲得音樂獎.

(1)從獲得美術(shù)獎和音樂獎的7名學(xué)生中選取1名參加頒獎大會,求剛好是男生的概率;

(2)分別從獲得美術(shù)獎、音樂獎的學(xué)生中各選取1名參加頒獎大會,用列表或樹狀圖求剛好是一男生一女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD120°,CEAD,且CEBC,連接BE交對角線AC于點(diǎn)F,則∠EFC_____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標(biāo)系中,一次函數(shù) )和二次函數(shù) )的圖象可能為(

A. A B. B C. C D. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD與正方形A1B1C1D1關(guān)于某點(diǎn)中心對稱,已知A, D1,D三點(diǎn)的坐標(biāo)分別是(0,4),(0,3),(0,2.

(1)對稱中心的坐標(biāo);

(2)寫出頂點(diǎn)B, C, B1 , C1的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案