【題目】如圖,將△ABC放在每個小正方形的邊長為1的網(wǎng)格中,點A、B、C均落在格點上.將線段AB繞點B順時針旋轉(zhuǎn)90°,得線段A′B,點A的對應(yīng)點為A′,連接AA′交線段BC于點D.
(Ⅰ)作出旋轉(zhuǎn)后的圖形;
(Ⅱ) = .
【答案】(1)見解析;(2)
【解析】試題分析:(1)根據(jù)圖形旋轉(zhuǎn)的性質(zhì)畫出圖形即可;
(2)以點B為原點建立坐標(biāo)系,利用待定系數(shù)法求出直線AA′及BC的直線方程,求出D點坐標(biāo),利用兩點間的距離公式得出BD及CD的長,進而可得出其比值.
試題解析:(1)如圖所示;
(2)如圖,以點B為原點建立坐標(biāo)系,則A(-1,2),A′(2,1),C(2,2),B(0,0),
設(shè)直線AA′的解析式為y=kx+b(k≠0),
則,
解得,
故直線AA′的解析式為y=x+;
∵C(2,2),B(0,0),
∴直線BC的解析式為y=x,
∴,
解得,
∴D(, ),
∴DB=,CD=,
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是兩張形狀、大小相同但是畫面不同的圖片,把兩張圖片從中間剪斷,再把四張形狀相同的小圖片(標(biāo)注a、b、c、d)混合在一起,從四張圖片中隨機摸取一張,接著再隨機摸取一張,則這兩張小圖片恰好合成一張完整圖片的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正北方向,在的正東方向,且.某一時刻,甲車從出發(fā),以的速度朝正東方向行駛,與此同時,乙車從出發(fā),以的速度朝正北方向行駛.小時后,位于點處的觀察員發(fā)現(xiàn)甲、乙兩車之間的夾角為,即,此時,甲、乙兩人相距的距離為( )
A. 90km B. 50 km C. 20 km D. 100km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】任何一個正整數(shù)n都可以進行這樣的分解:n=s×t(s,t是正整數(shù),且s≤t),如果p×q在n的所有這種分解中兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:、例如18可以分解成1×18,2×9,3×6這三種,這時就有.給出下列關(guān)于F(n)的說法:(1);(2);(3)F(27)=3;(4)若n是一個整數(shù)的平方,則F(n)=1.其中正確說法的有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象與x軸交于點A(-1, 0),與y軸交于點C(0,-5),且經(jīng)過點D(3,-8).
(1)求此二次函數(shù)的解析式和頂點坐標(biāo);
(2)請你寫出一種平移的方法,使平移后拋物線的頂點落在原點處,并寫出平移后拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點,點,點,把繞點B逆時針旋轉(zhuǎn),得,點A,O旋轉(zhuǎn)后的對應(yīng)點為,,記旋轉(zhuǎn)角為.
(1)如圖,若,求的長;
(2)如圖,若,求點的坐標(biāo);
(3)在的條件下,邊OA上的一點P旋轉(zhuǎn)后的對應(yīng)點為,當(dāng)取得最小值時,求點的坐標(biāo)直接寫出結(jié)果即可
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在圓內(nèi)接四邊形ABCD中,CD為∠BCA外角的平分線,F為弧AD上一點,BC=AF,延長DF與BA的延長線交于E.
⑴求證△ABD為等腰三角形.
⑵求證ACAF=DFFE
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列正確的選項是( )
A.命題“同旁內(nèi)角互補”是真命題
B.“作線段AC”這句話是命題
C.“對頂角相等”是定義
D.說明命題“若x>y,則a2x>a2y”是假命題,只能舉反例a=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料,然后解答問題:
我們新定義一種三角形,兩邊的平方和等于第三邊平方的2倍的三角形叫做奇異三角形.
(1)理解并填空:
①根據(jù)奇異三角形的定義,請你判斷:等邊三角形一定是奇異三角形嗎? (填“是”或“不是”)
②若某三角形的三邊長分別為1、、2,則該三角形 (填“是”或“不是”)奇異三角形.
(2)探究:在中,兩邊長分別是,且,,則這個三角形是否是奇異三角形?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com