【題目】在平面直角坐標(biāo)系xOy中,函數(shù)的圖象G經(jīng)過點(diǎn),直線y軸交于點(diǎn)B,與圖象G交于點(diǎn)C.

1)求m的值.

2)橫、縱坐標(biāo)都是整數(shù)的點(diǎn)叫做整點(diǎn).記圖象G在點(diǎn)A,C之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.

①當(dāng)直線l過點(diǎn)時(shí),直接寫出區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù).

②若區(qū)域W內(nèi)的整點(diǎn)不少于4個(gè),結(jié)合函數(shù)圖象,求k的取值范圍.

【答案】1m=6;(2)①1個(gè);②k>4.

【解析】

1)把點(diǎn)A坐標(biāo)代入,求出m的值即可;

2)①把點(diǎn)(2,0)代入y=kx-1,可求出直線l解析式,聯(lián)立反比例函數(shù)解析式可求出C點(diǎn)坐標(biāo),畫出圖象,根據(jù)整點(diǎn)的定義即可得答案;②由直線l解析式可得B點(diǎn)坐標(biāo)為(0-1),利用待定系數(shù)法可得直線AB的解析式,可得B點(diǎn)坐標(biāo)為(0,-1),當(dāng)點(diǎn)C在點(diǎn)A下方時(shí),可得整點(diǎn)最多有3個(gè),不符合題意,當(dāng)點(diǎn)C在點(diǎn)A上方時(shí),根據(jù)直線AC經(jīng)過整點(diǎn)(1,3)時(shí)有3個(gè)整點(diǎn),把(13)代入y=kx-1,可求出k的值,整點(diǎn)不少于4個(gè)即可得k的取值范圍.

1)∵函數(shù)的圖象G經(jīng)過點(diǎn)

2=,

解得:m=6.

2)①如圖,∵直線l經(jīng)過(2,0),

2k-1=0,

解得:k=,

∴直線l的解析式為y=x-1,

∴點(diǎn)(4,1)在直線l上,

,

解得:,或(舍去),

∴點(diǎn)C坐標(biāo)為(,),

∵直線l的解析式為y=kx-1,與y軸交于點(diǎn)B,

∴點(diǎn)B坐標(biāo)為(0,-1),

設(shè)直線AB的解析式為y=mx+n,

A3,2),B0,-1),

,

解得:,

∴直線AB的解析式為y=x-1,

∴點(diǎn)(2,1)在直線AB上,

4<<5,1<<2

∴區(qū)域W內(nèi)的整點(diǎn)個(gè)數(shù)只有(3,1),共1個(gè).

②當(dāng)點(diǎn)C在點(diǎn)A下方時(shí),

如圖,當(dāng)y=1時(shí),,

解得:x=6,

∴點(diǎn)C坐標(biāo)為(6,1),

y=(x>0)的函數(shù)值yx的增大而減小,

x>6時(shí),沒有整點(diǎn),

∴最多有(31),(4,1),(5,1)三個(gè)整點(diǎn),不符合題意,

當(dāng)點(diǎn)C在點(diǎn)A上方時(shí),

如圖,當(dāng)x=2時(shí),反比例函數(shù)y==3,一次函數(shù)y=2-1=1

∴當(dāng)x=2時(shí)有一個(gè)整點(diǎn)(2,2),

∵整點(diǎn)不少于4個(gè),

x=1時(shí),整點(diǎn)數(shù)應(yīng)不少于3個(gè),

∴整點(diǎn)為(11),(1,2),(1,3),

當(dāng)直線AC經(jīng)過(1,3)時(shí),k-1=3

解得:k=4,

k>4時(shí),區(qū)域W內(nèi)的整點(diǎn)不少于4個(gè).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,點(diǎn)、分別在邊、上,,連結(jié),點(diǎn)、分別為、、的中點(diǎn).

1)觀察猜想圖1中,線段的數(shù)量關(guān)系是_______,位置關(guān)系是_______;

2)探究證明把繞點(diǎn)逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連結(jié)、,判斷的形狀,并說明理由;

3)拓展延伸把繞點(diǎn)在平面內(nèi)自由旋轉(zhuǎn),若,,請直接寫出面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】附加題:在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為點(diǎn),

1)求拋物線的對稱軸;

2)求點(diǎn)坐標(biāo)(用含的式子表示);

3)已知點(diǎn),若拋物線與線段恰有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖像,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形中,分別為上的點(diǎn),且,連接并延長,與的延長線交于點(diǎn),連接

1)求證:四邊形是平行四邊形;

2)連接,若,,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于平面內(nèi)的點(diǎn)和點(diǎn),給出如下定義:點(diǎn)為平面內(nèi)的一點(diǎn),若點(diǎn)使得是以為頂角且小于90°的等腰三角形,則稱點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).如圖,點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn).在平面直角坐標(biāo)系中,點(diǎn)是坐標(biāo)原點(diǎn).

1)已知點(diǎn),在點(diǎn)中,是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn)的是___________

2)已知點(diǎn),點(diǎn)在直線上,若點(diǎn)是點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),求實(shí)數(shù)的取值范圍.

3)點(diǎn)軸上的動(dòng)點(diǎn),,點(diǎn)是以為圓心,2為半徑的圓上一個(gè)動(dòng)點(diǎn),且滿足.直線軸和軸分別交于點(diǎn),若線段上存在點(diǎn)關(guān)于點(diǎn)的銳角等腰點(diǎn),請直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形中,,點(diǎn)邊上一動(dòng)點(diǎn)(與點(diǎn)不重合),連接的兩邊所在射線以點(diǎn)為中心,順時(shí)針旋轉(zhuǎn)分別交射線于點(diǎn)

1)依題意補(bǔ)全圖形;

2)若,求的大小(用含的式子表示) ;

3)用等式表示線段之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把三角形紙片折疊,使的對應(yīng)點(diǎn)上,點(diǎn)的對應(yīng)點(diǎn)上,折痕分別為,,若,,則的長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBC,CE平分∠BCD,∠DAC3BCD,∠ACD20°,當(dāng)ABAC互相垂直時(shí),∠B的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形中,邊上的兩個(gè)動(dòng)點(diǎn),且,連接,交于點(diǎn),連接于點(diǎn),連接,下列結(jié)論:①;②平分;③;④;⑤線段的最小值是.正確的個(gè)數(shù)有(

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊答案