【題目】如圖,,,弧BC所對(duì)的圓心角為,且若點(diǎn)P在弧BC上,點(diǎn)EF分別在AB、AC 的最小值為______

【答案】

【解析】

連接APOP,分別以AB、AC所在直線為對(duì)稱軸,作出P關(guān)于AB的對(duì)稱點(diǎn)為MP關(guān)于AC的對(duì)稱點(diǎn)為N,連接MN,交AB于點(diǎn)E,交AC于點(diǎn)F,連接PE、PF,所以,設(shè),易求得:,所以,即當(dāng)AP最小時(shí),可取得最小值.

連接AP,O分別以AB、AC所在直線為對(duì)稱軸,作出P關(guān)于AB的對(duì)稱點(diǎn)為M,P關(guān)于AC的對(duì)稱點(diǎn)為N,連接MN,交AB于點(diǎn)E,交AC于點(diǎn)F,連接PE、PF

,

,

,

、PN在以A為圓心,AP為半徑的圓上,

設(shè),

易求得:,

,

,

當(dāng)AP最小時(shí),可取得最小值

,

,即點(diǎn)POA上時(shí),AP可取得最小值,

中,,

,

,

是等邊三角形,

,作AC的延長(zhǎng)線于H

中,,

,,

中,,

此時(shí),

的最小值為,

故答案為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形中,是對(duì)角線上的一個(gè)動(dòng)點(diǎn),連接,過(guò)點(diǎn)于點(diǎn)

1)如圖①,求證:;

2)如圖②,連接的中點(diǎn),的延長(zhǎng)線交邊于點(diǎn),當(dāng)時(shí),求的長(zhǎng);

3)如圖③,過(guò)點(diǎn),當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊在正方形的邊上,的中點(diǎn),的平分線過(guò)點(diǎn),交于點(diǎn),連接,,交于點(diǎn),對(duì)于下面四個(gè)結(jié)論:①;②;③;④,其中正確結(jié)論的序號(hào)為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC為直角三角形,∠B90°AC邊上取一點(diǎn)D,使CDAB.分別過(guò)點(diǎn)CCEBC,過(guò)點(diǎn)DDEAC,CE,DE相交于E,連結(jié)AE

1)求證:△ABC≌△CDE;

2)若∠AED20°,求∠ACE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們定義一種新函數(shù):形如,且)的函數(shù)叫做“鵲橋”函數(shù).小麗同學(xué)畫(huà)出了“鵲橋”函數(shù)y=|x2-2x-3|的圖象(如圖所示),并寫(xiě)出下列五個(gè)結(jié)論:①圖象與坐標(biāo)軸的交點(diǎn)為,;②圖象具有對(duì)稱性,對(duì)稱軸是直線;③當(dāng)時(shí),函數(shù)值值的增大而增大;④當(dāng)時(shí),函數(shù)的最小值是0;⑤當(dāng)時(shí),函數(shù)的最大值是4.其中正確結(jié)論的個(gè)數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線軸交于、兩點(diǎn),與軸交于點(diǎn),,,連接

1)求拋物線的解析式;

2)點(diǎn)在拋物線的對(duì)稱軸上,當(dāng)的周長(zhǎng)最小時(shí),求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù),是常數(shù),)圖象的一部分,與軸的交點(diǎn)在點(diǎn)之間,對(duì)稱軸是.有下列說(shuō)法:①;②;③;④為實(shí)數(shù));⑤當(dāng)時(shí),.其中正確的是______(填寫(xiě)所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)△ABC(頂點(diǎn)為網(wǎng)格線的交點(diǎn))及過(guò)格點(diǎn)的直線l

1)畫(huà)出△ABC關(guān)于直線l對(duì)稱的△A1B1C1;

2)將△ABC向上平移3個(gè)單位長(zhǎng)度,再向左平移1個(gè)單位長(zhǎng)度,畫(huà)出平移后的△A2B2C2

3)以A、A1、A2為頂點(diǎn)的三角形中,tanA2AA1   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】觀察猜想:(1)如圖①,在RtABC中,∠BAC90°,ABAC3,點(diǎn)D與點(diǎn)A重合,點(diǎn)E在邊BC上,連接DE,將線段DE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到線段DF,連接BF,BEBF的位置關(guān)系是   ,BE+BF   ;

探究證明:(2)在(1)中,如果將點(diǎn)D沿AB方向移動(dòng),使AD1,其余條件不變,如圖②,判斷BEBF的位置關(guān)系,并求BE+BF的值,請(qǐng)寫(xiě)出你的理由或計(jì)算過(guò)程;

拓展延伸:(3)如圖③,在△ABC中,ABAC,∠BACa,點(diǎn)D在邊BA的延長(zhǎng)線上,BDn,連接DE,將線段DE繞著點(diǎn)D順時(shí)針旋轉(zhuǎn),旋轉(zhuǎn)角∠EDFa,連接BF,則BE+BF的值是多少?請(qǐng)用含有na的式子直接寫(xiě)出結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案