【題目】如圖,正方形的邊在正方形的邊上,的中點(diǎn),的平分線過點(diǎn),交于點(diǎn),連接,交于點(diǎn),對(duì)于下面四個(gè)結(jié)論:①;②;③;④,其中正確結(jié)論的序號(hào)為__________

【答案】①②④

【解析】

證明△BCE≌△DCG,即可證得∠BEC=DGC,然后根據(jù)三角形的內(nèi)角和定理證得∠EHG=90°,則HGBE,然后證明△BGH≌△EGH,則HBE的中點(diǎn),則OH是△BGE的中位線,根據(jù)三角形的中位線定理即可判斷②.根據(jù)△DHN∽△DGC求得兩個(gè)三角形的邊長(zhǎng)的比,則③④即可判斷.

解:四邊形是正方形,

,

同理可得,

中,

,

,

,

,

,故①正確;

中,

,

的中點(diǎn),

,

故②正確;

設(shè)相交于點(diǎn),

設(shè),則,設(shè)正方形的邊長(zhǎng)是,則,

,

,即,即,

解得:,或(舍去),

,故③錯(cuò)誤;

,

,

,

,故④正確.

故答案為:①②④.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),線段AB的兩個(gè)端點(diǎn)A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點(diǎn)C為線段AB的中點(diǎn),現(xiàn)將線段BA繞點(diǎn)B按順時(shí)針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+ca≠0)經(jīng)過點(diǎn)D

1)如圖1,若該拋物線經(jīng)過原點(diǎn)O,且a=-

①求點(diǎn)D的坐標(biāo)及該拋物線的解析式;

②連結(jié)CD,問:在拋物線上是否存在點(diǎn)P,使得∠POB與∠BCD互余?若存在,請(qǐng)求出所有滿足條件的點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由;

2)如圖2,若該拋物線y=ax2+bx+ca≠0)經(jīng)過點(diǎn)E11),點(diǎn)Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點(diǎn)的個(gè)數(shù)是3個(gè),請(qǐng)直接寫出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),四邊形ABCD中,ABCD,∠ADC=90°,PA點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度,按A→B→C→D的順序在邊上勻速運(yùn)動(dòng),設(shè)P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖(2)所示,當(dāng)P運(yùn)動(dòng)到BC中點(diǎn)時(shí),△PAD的面積為( )

A. 4B. 5C. 6D. 7

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(操作思考)畫⊙和⊙的直徑、弦,使,垂足為(如圖1).猜想所畫的圖中有哪些相等的線段、相等的劣弧?(除外).

1)猜想:① ;② ;③

操作:將圖1中的沿著直徑翻折,因?yàn)閳A是軸對(duì)稱圖形,過圓心的任意一條直線都是它的對(duì)稱軸,所以重合,又因?yàn)?/span>,所以射線與射線重合(如圖2),于是點(diǎn)與點(diǎn)重合,從而證實(shí)猜想.

(知識(shí)應(yīng)用)圖3是某品牌的香水瓶,從正面看上去(如圖4),它可以近似看作割去兩個(gè)弓形后余下的部分與矩形組合而成的圖形(點(diǎn)上),其中

2)已知⊙的半徑為,,,求香水瓶的高度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形的邊長(zhǎng)為1,點(diǎn)邊上的一個(gè)動(dòng)點(diǎn)(與不重合),以為頂點(diǎn)在所在直線的上方作

1)當(dāng)經(jīng)過點(diǎn)時(shí),

①請(qǐng)直接填空:________(可能,不可能)過點(diǎn):(圖1僅供分析)

②如圖2,在上截取,過點(diǎn)作垂直于直線,垂足為點(diǎn),作,求證:四邊形為正方形;

③如圖2,將②中的已知與結(jié)論互換,即在上取點(diǎn)點(diǎn)在正方形外部),過點(diǎn)作垂直于直線,垂足為點(diǎn),作,若四邊形為正方形,那么是否相等?請(qǐng)說明理由;

2)當(dāng)點(diǎn)在射線上且不過點(diǎn)時(shí),設(shè)交邊,且.在上存在點(diǎn),過點(diǎn)作垂直于直線,垂足為點(diǎn),使得,連接,則當(dāng)為何值時(shí),四邊形的面積最大?最大面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為滿足市場(chǎng)需求,某超市在“中秋”節(jié)前購(gòu)進(jìn)一種品牌月餅,每盒進(jìn)價(jià)40元,超市規(guī)定每盒售價(jià)不得低于40元,根據(jù)以往銷售經(jīng)驗(yàn),當(dāng)售價(jià)定為每盒45元時(shí),預(yù)計(jì)每天可以賣出700盒,每盒售價(jià)每提高1元,每天要少賣出20盒.

1)試求每天的銷售量(盒)與售價(jià)(元)之間的函數(shù)關(guān)系式;

2)如果要保證超市每天的利潤(rùn)為7980元,又要盡量減少庫(kù)存,超市每天應(yīng)該銷售多少盒月餅?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)二次函數(shù)滿足以下條件:

①函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,y2)(點(diǎn)B在點(diǎn)A的右側(cè));

②對(duì)稱軸是x=3;

③該函數(shù)有最小值是﹣2.

(1)請(qǐng)根據(jù)以上信息求出二次函數(shù)表達(dá)式;

(2)將該函數(shù)圖象xx2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點(diǎn)C(x3,y3)、D(x4,y4)、E(x5,y5)(x3x4x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,,,弧BC所對(duì)的圓心角為,且若點(diǎn)P在弧BC上,點(diǎn)E、F分別在ABAC 的最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列判斷正確的是(

A.打開電視機(jī),正在播NBA籃球賽是必然事件

B.擲一枚硬幣正面朝上的概率是表示每擲硬幣2次就必有1次反面朝上

C.一組數(shù)據(jù)23,4,5,5,6的眾數(shù)和中位數(shù)都是5

D.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

同步練習(xí)冊(cè)答案