【題目】如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點(diǎn)E,F(xiàn)分別是AB,BC邊的中點(diǎn),連接AF,CE交于點(diǎn)M,連接BM并延長(zhǎng)交CD于點(diǎn)N,連接DE交AF于點(diǎn)P,則結(jié)論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤SEPM= S梯形ABCD , 正確的個(gè)數(shù)有( )

A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)

【答案】B
【解析】連接DF,AC,EF,如圖所示:

∵E、F分別為AB、BC的中點(diǎn),且AB=BC,

∴AE=EB=BF=FC,

在△ABF和△CBE中,

,

∴△ABF≌△CBE(SAS),

∴∠BAF=∠BCE,AF=CE,

在△AME和△CMF中,

,

∴△AME≌△CMF(AAS),

∴EM=FM,

在△BEM和△BFM中,

,

∴△BEM≌△BFM(SSS),

∴∠ABN=∠CBN,選項(xiàng)①正確;

∵AE=AD,∠EAD=90°,

∴△AED為等腰直角三角形,

∴∠AED=45°,

∵∠ABC=90°,

∴∠ABN=∠CBN=45°,

∴∠AED=∠ABN=45°,

∴ED∥BN,選項(xiàng)②正確;

∵AB=BC=2AD,且BC=2FC,

∴AD=FC,又AD∥FC,

∴四邊形AFCD為平行四邊形,

∴AF=DC,又AF=CE,

∴DC=EC,

則△CED為等腰三角形,選項(xiàng)③正確;

∵EF為△ABC的中位線(xiàn),

∴EF∥AC,且EF= AC,

∴∠MEF=∠MCA,∠EFM=∠MAC,

∴△EFM∽△CAM,

∴EM:MC=EF:AC=1:2,

設(shè)EM=x,則有MC=2x,EC=EM+MC=3x,

設(shè)EB=y,則有BC=2y,

在Rt△EBC中,根據(jù)勾股定理得:EC= = y,

∴3x= y,即x:y= :3,

∴EM:BE= :3,選項(xiàng)④正確;

∵E為AB的中點(diǎn),EP∥BM,

∴P為AM的中點(diǎn),

∴SAEP=SEPM= SAEM

又SAEM=SBEM,且SBEM=SBFM,

∴SAEM=SBEM=SBFM= SABF,

∵四邊形ABFD為矩形,

∴SABF=SADF,又SADF=SDFC,

∴SABF=SADF=SDFC= S梯形ABCD,

∴SEPM= S梯形ABCD,選項(xiàng)⑤錯(cuò)誤.

則正確的個(gè)數(shù)有4個(gè).

故答案為:B.

連接DF,AC,EF,如圖所示,由E、F分別為AB、BC的中點(diǎn),且AB=BC,得到EB=FB,再由一對(duì)公共角相等,利用“SAS”可得出△ABF與△CBE全等,利用AAS可得出△AME與△CMF全等,由全等三角形的對(duì)應(yīng)邊相等可得出ME=MF,再由BE=BF,BM=BM,利用SSS得到△BEM與△BFM全等,根據(jù)全等三角形的對(duì)應(yīng)角相等可得出∠ABN=∠CBN,選項(xiàng)①正確;由AD=AE,梯形為直角梯形,得到∠EAD為直角,可得出△AED為等腰直角三角形,可得出∠AED為45°,由∠ABC為直角,且∠ABN=∠CBN,可得出∠ABN為45°,根據(jù)同位角相等可得出DE平行于BN,選項(xiàng)②正確;先得到AD=FC,又AD與FC平行,得到ADCF為平行四邊形,可得出AF=DC,又AF=CE,等量代換可得出DC=EC,即△DCE為等腰三角形,選項(xiàng)③正確;由EF為△ABC的中位線(xiàn),得出△EFM與△ACM相似,進(jìn)而可得出EM:MC=1:2,設(shè)EM=x,則有MC=2x,用EM+MC表示出EC,設(shè)EB=y,根據(jù)BC=2EB,表示出BC,在直角三角形BCE中,利用勾股定理表示出EC,兩者相等得到x與y的比值,即為EM與BE的比值,即可判斷選項(xiàng)④正確與否;由E為AB的中點(diǎn),利用等底同高得到△AME的面積與△BME的面積相等,由△BME與△BFM全等,得到面積相等,可得出三個(gè)三角形的面積相等都為△ABF面積的,進(jìn)一步可得出△AEP的面積等于△PEM的面積,得到△PEM的面積為△ABF面積的,由ABFD為矩形得到△ABF與△ADF全等,面積相等,由△ADF與△CFD全等得到面積相等,可得出三個(gè)三角形面積相等都為梯形面積的,綜上得到△PEM的面積為梯形面積的,可得出選項(xiàng)⑤錯(cuò)誤,綜上,即可得到所求正確的個(gè)數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方形中,為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為滿(mǎn)足,點(diǎn)在第一象限內(nèi),點(diǎn)從原點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度沿著的線(xiàn)路移動(dòng).

求點(diǎn)的坐標(biāo)為 ;當(dāng)點(diǎn)移動(dòng)秒時(shí),點(diǎn)的坐標(biāo)為

在移動(dòng)過(guò)程中,當(dāng)點(diǎn)移動(dòng)秒時(shí),求的面積.

的條件下,坐標(biāo)軸上是否存在點(diǎn),使的面積與的面積相等,若存在,求點(diǎn)的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別在AD、BC邊上,且AE=CF.

求證:(1)ABE≌△CDF;

(2)四邊形BFDE是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為AB上一點(diǎn),作CD⊥AB交⊙O于D,連接AD,將△ACD沿AD翻折至△AC′D.

(1)請(qǐng)你判斷C′D與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)B作BB′⊥C′D′于B′,交⊙O于E,若CD= ,AC=3,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問(wèn)題中一種重要的思想方法,通過(guò)旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問(wèn)題.已知,中,,,點(diǎn)、在邊上,且.

1)如圖,當(dāng)時(shí),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)的位置,連接,

的度數(shù);

②求證;

2)如圖,當(dāng)時(shí),猜想、的數(shù)量關(guān)系,并說(shuō)明理由;

3)如圖,當(dāng),,時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】A,B,C三名大學(xué)生競(jìng)選系學(xué)生會(huì)主席,他們的筆試成績(jī)和口試成績(jī)(單位:分)分別用了兩種方式進(jìn)行了統(tǒng)計(jì),如表和圖一:

A

B

C

筆試

85

95

90

口試

80

85


(1)請(qǐng)將表一和圖一中的空缺部分補(bǔ)充完整.
(2)競(jìng)選的最后一個(gè)程序是由本系的300名學(xué)生進(jìn)行投票,三位候選人的得票情況如圖二(沒(méi)有棄權(quán)票,每名學(xué)生只能推薦一個(gè)),請(qǐng)計(jì)算每人的得票數(shù).
(3)若每票計(jì)1分,系里將筆試、口試、得票三項(xiàng)測(cè)試得分按4:3:3的比例確定個(gè)人成績(jī),請(qǐng)計(jì)算三位候選人的最后成績(jī),并根據(jù)成績(jī)判斷誰(shuí)能當(dāng)選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在菱形ABCD中,∠ABC=60°,E是對(duì)角線(xiàn)AC上一點(diǎn),F(xiàn)是線(xiàn)段BC延長(zhǎng)線(xiàn)上一點(diǎn),且CF=AE,連接BE、EF.

(1)若E是線(xiàn)段AC的中點(diǎn),如圖1,易證:BE=EF(不需證明);
(2)若E是線(xiàn)段AC或AC延長(zhǎng)線(xiàn)上的任意一點(diǎn),其它條件不變,如圖2、圖3,線(xiàn)段BE、EF有怎樣的數(shù)量關(guān)系,直接寫(xiě)出你的猜想;并選擇一種情況給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn) 軸交于 、 兩點(diǎn)(點(diǎn) 在點(diǎn) 的左側(cè)),點(diǎn) 的坐標(biāo)為 ,與 軸交于點(diǎn) ,作直線(xiàn) .動(dòng)點(diǎn) 軸上運(yùn)動(dòng),過(guò)點(diǎn) 軸,交拋物線(xiàn)于點(diǎn) ,交直線(xiàn) 于點(diǎn) ,設(shè)點(diǎn) 的橫坐標(biāo)為
(Ⅰ)求拋物線(xiàn)的解析式和直線(xiàn) 的解析式;
(Ⅱ)當(dāng)點(diǎn) 在線(xiàn)段 上運(yùn)動(dòng)時(shí),求線(xiàn)段 的最大值;
(Ⅲ)當(dāng)以 、 、 、 為頂點(diǎn)的四邊形是平行四邊形時(shí),直接寫(xiě)出 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC=1,點(diǎn)D、E在直線(xiàn)BC上運(yùn)動(dòng),設(shè)BD=x,CE=y(tǒng).如果∠BAC=30°,∠DAE=105°,則y與x之間的函數(shù)關(guān)系式為.

查看答案和解析>>

同步練習(xí)冊(cè)答案