【題目】如圖,在長方形中,為平面直角坐標系的原點,點的坐標為,點的坐標為滿足,點在第一象限內(nèi),點從原點出發(fā),以每秒個單位長度的速度沿著的線路移動.

求點的坐標為 ;當點移動秒時,點的坐標為

在移動過程中,當點移動秒時,求的面積.

的條件下,坐標軸上是否存在點,使的面積與的面積相等,若存在,求點的坐標;若不存在,說明理由.

【答案】1,;(212;(3

【解析】

1)已知,利用平方根和絕對值的非負性,可求出a,b的值,即可求出A點和C點坐標,進而求出B點坐標,當P移動5秒時,則P移動的距離是5×2=10,已知P點沿著的線路移動,且知道長方形邊長,即可求出P點坐標.

2)當點移動秒時,已知長方形邊長,找到P點走到哪條邊上, 即可求出的面積.

3)分兩種情況討論:①當點軸上時,,即可求出Q點坐標;②當點軸上時,,進而求出Q點坐標.

1)∵

a-8=0,b-12=0

a=8,b=12

,

是長方形

B點坐標為(8,12)

P移動5秒時,則P移動的距離是5×2=10

OA=8

AP=2

P(8,2)

故答案為:(8,12)(8,2)

2)當點移動秒時,

∴點在邊上,如圖所示

此時

故答案為:12

3)①當點軸上時

或者

②當點軸上時,

或者

綜上所述,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣ x+1與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A,B兩點.

(1)求拋物線的解析式;
(2)點P是第一象限拋物線上的一點,連接PA、PB、PO,若△POA的面積是△POB面積的 倍.
①求點P的坐標;
②點Q為拋物線對稱軸上一點,請直接寫出QP+QA的最小值;
(3)點M為直線AB上的動點,點N為拋物線上的動點,當以點O、B、M、N為頂點的四邊形是平行四邊形時,請直接寫出點M的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了推動陽光體育運動的廣泛開展,引導(dǎo)學(xué)生走向操場,走進大自然,走到陽光,積極參加體育鍛煉,學(xué)校準備購買一批運動鞋供學(xué)生借用,現(xiàn)從各年的隨機抽取了部分學(xué)生的鞋號,繪制了統(tǒng)計圖A和圖B,請根據(jù)相關(guān)信息,解答下列問題:

1)本次隨機抽樣的學(xué)生數(shù)是多少?A值是多少?

2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)和中位數(shù)各是多少?

3)根據(jù)樣本數(shù)據(jù),若學(xué)校計劃購買200雙運動鞋,建議購買35號運動鞋多少雙?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=x+k和雙曲線y= (k為正整數(shù))交于A,B兩點.

(1)當k=1時,求A、B兩點的坐標;
(2)當k=2時,求△AOB的面積;
(3)當k=1時,△OAB的面積記為S1 , 當k=2時,△OAB的面積記為S2 , …,依此類推,當k=n時,△OAB的面積記為Sn , 若S1+S2+…+Sn= ,求n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建美麗鄉(xiāng)村,某村計劃購買甲、乙兩種樹苗共400棵,對本村道路進行綠化改造,已知甲種樹苗每棵200元,乙種樹苗每棵300元.

若購買兩種樹苗的總金額為90000元,求需購買甲、乙兩種樹苗各多少棵?

若購買甲種樹苗的金額不少于購買乙種樹苗的金額,則至少應(yīng)購買甲種樹苗多少棵?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以點A為圓心在梯形內(nèi)畫出一個最大的扇形,則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點,且BE=DF,連接EF交BD于O.

(1)求證:BO=DO;

(2)若EF⊥AB,延長EF交AD的延長線于G,當FG=1時,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點,與x軸交于點C,與y軸交于點D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個數(shù)是( )

A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點E,F(xiàn)分別是AB,BC邊的中點,連接AF,CE交于點M,連接BM并延長交CD于點N,連接DE交AF于點P,則結(jié)論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤SEPM= S梯形ABCD , 正確的個數(shù)有( )

A.5個
B.4個
C.3個
D.2個

查看答案和解析>>

同步練習(xí)冊答案