【題目】在矩形中,,點是直線一動點,若將沿折疊,使點落在平面上的點處,連結(jié).若三點在一直線上,則____

【答案】

【解析】

分兩種情況討論:①當(dāng)點P在線段BC上時,②當(dāng)點PBC的延長線上時,分別根據(jù)折疊的性質(zhì)和勾股定理列方程求解即可.

解:①如圖1,當(dāng)點P在線段BC上時,

由折疊得:ABAE5,BPPE,∠B=∠AEP90°

RtADE中,由勾股定理得:DE,

設(shè)BPx,則PExPC7x

RtDCP中,由勾股定理得:,

解得:x,即:BP

②如圖2,當(dāng)點PBC的延長線上時,

由折疊得:ABAE5BPPE,∠B=∠AEP90°,

∵∠E=∠ADC=∠DCP90°,

∴∠EAD+∠EDA=∠EDA+∠CDP90°,

∴∠EAD=∠CDP,

又∵AEABDC,

ADE≌△DPCAAS),

ADDP7,

RtDCP中,由勾股定理得:PC,

BPBCPC7,

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平面內(nèi)有一點P到△ABC的三個頂點的距離分別為PA、PB、PC,若有PA2PB2+PC2則稱點P為△ABC關(guān)于點A的勾股點.

1)如圖2,在4×5的網(wǎng)格中,每個小正方形的長均為1,點A、B、CD、EF、G均在小正方形的頂點上,則點D是△ABC關(guān)于點   的勾股點;在點EF、G三點中只有點   是△ABC關(guān)于點A的勾股點.

2)如圖3,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,

①求證:CECD

②若DADE,∠AEC120°,求∠ADE的度數(shù).

3)矩形ABCD中,AB5,BC6,E是矩形ABCD內(nèi)一點,且點C是△ABE關(guān)于點A的勾股點,若△ADE是等腰三角形,直接寫出AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形AOBC的頂點C的坐標(biāo)是(2,4),動點P從點A出發(fā),沿線段AO向終點O運動,同時動點Q從點B出發(fā),沿線段BC向終點C運動.點P、Q的運動速度均為每秒1個單位,過點PPEAOAB于點E,一點到達,另一點即停.設(shè)點P的運動時間為t秒(t0).

1)填空:用含t的代數(shù)式表示下列各式:AP______,CQ_______

2)①當(dāng)PE時,求點Q到直線PE的距離.

②當(dāng)點Q到直線PE的距離等于時,直接寫出t的值.

3)在動點P、Q運動的過程中,點H是矩形AOBC(包括邊界)內(nèi)一點,且以B、QE、H為頂點的四邊形是菱形,直接寫出點H的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,開設(shè)了數(shù)獨、速算、魔方、七巧板、華容道五門校本課程,規(guī)定每位學(xué)生只能選一門.該校共有學(xué)生1600人.為了解學(xué)生的報名意向,學(xué)校隨機調(diào)查了一些學(xué)生,并制成如下統(tǒng)計圖表:

校本課程報名意向統(tǒng)計表

課程

頻數(shù)

頻率

數(shù)獨

8

a

速算

m

0.2

魔方

27

b

七巧板

n

0.3

華容道

15

c

1)在這次活動中,學(xué)校采取的調(diào)查方式是   (填寫普查抽樣調(diào)查);

2)求出扇形統(tǒng)計圖中速算所對應(yīng)的扇形圓心角的度數(shù);

3a+b+c   ,m   ;(答案直接填寫在橫線上)

4)請你估算,全校選擇數(shù)獨魔方的學(xué)生共有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 貧困戶老王在精準(zhǔn)扶貧工作隊的幫扶下,在一片土地上種植了優(yōu)質(zhì)水果藍莓,經(jīng)核算,種植成本為18/千克.今年正式上市銷售,通過30天的試銷發(fā)現(xiàn):第1天賣出20千克;以后每天比前一天多賣4千克,銷售價格/千克)與時間x(天)之間滿足如下表:

時間(天)

(1≤x20

(20≤x≤30

銷售價格y(元/千克)

-0.5x+38

25

(其中,x,y均為整數(shù))

1)試銷中銷售量P(千克)與時間(天)之間的函數(shù)關(guān)系式為

2)求銷售藍莓第幾天時,當(dāng)天的利潤w最大?最大利潤是多少元?

3)求試銷的30天中,當(dāng)天利潤w不低于870元的天數(shù)共有幾天.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進、兩種新型節(jié)能臺燈共盞,這兩種臺燈的進價、售價如表所示:

)若商場預(yù)計進貨款為元,則這兩種臺燈各購進多少盞?

)若商場規(guī)定型臺燈的進貨數(shù)量不超過型臺燈數(shù)量的倍,應(yīng)怎樣進貨才能使商場在銷售完這批臺燈時獲利最多?此時利潤為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD,BAD=60°,對角線ACBD相交于點O將其繞著點O順時針旋轉(zhuǎn)90°得到菱形A‘B’C‘D’.AB=1,則旋轉(zhuǎn)前后兩菱形重疊部分圖形的周長為__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形,,,(),以為旋轉(zhuǎn)中心順時針旋轉(zhuǎn)矩形,得到矩形

1)如圖1,當(dāng)點落在邊上時,求的長;

2)如圖2,當(dāng)時,矩形的對角線交矩形的邊于點,連結(jié),若是等腰三角形,求直線的解析式.

3)如圖3,當(dāng)時,矩形的對稱中心為點的面積為,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解同學(xué)們對網(wǎng)絡(luò)游戲的喜好和作業(yè)量多少的相關(guān)性,小明隨機對年級50名同學(xué)進行了調(diào)查,并將調(diào)查的情況進行了整理,如下表:

作業(yè)量多少

網(wǎng)絡(luò)游戲的喜好

認(rèn)為作業(yè)多

認(rèn)為作業(yè)不多

合計

喜歡網(wǎng)絡(luò)游戲

18

9

27

不喜歡網(wǎng)絡(luò)游戲

8

15

23

合計

26

24

50

如果小明再隨機采訪一名同學(xué),那么這名同學(xué)是喜歡網(wǎng)絡(luò)游戲并認(rèn)為作業(yè)多的可能性______不喜歡網(wǎng)絡(luò)游戲并認(rèn)為作業(yè)不多的可能性.(填“>”“=”“<”

查看答案和解析>>

同步練習(xí)冊答案