【題目】矩形,,,,(),以為旋轉(zhuǎn)中心順時(shí)針旋轉(zhuǎn)矩形,得到矩形

1)如圖1,當(dāng)點(diǎn)落在邊上時(shí),求的長(zhǎng);

2)如圖2,當(dāng)時(shí),矩形的對(duì)角線交矩形的邊于點(diǎn),連結(jié),若是等腰三角形,求直線的解析式.

3)如圖3,當(dāng)時(shí),矩形的對(duì)稱中心為點(diǎn)的面積為,求的取值范圍.

【答案】1;(2;(3

【解析】

1)如圖1,當(dāng)點(diǎn)D落在邊BC上時(shí),BD2AD2AB2,即可求解;

2)分CGEG、CEGECECG三種情況分別求解;

3)根據(jù)MNMAAD,當(dāng)射線DA經(jīng)過點(diǎn)M時(shí),MNMAAD,的最大值是,當(dāng)邊AD經(jīng)過點(diǎn)M,即PM重合時(shí),MNPDMNPDADAP4,的最小值是,故可求解.

解:(1) 如圖1,在矩形ABCO中,∠B =90°

當(dāng)點(diǎn)D落在邊BC上時(shí),BD2=AD2-AB2

C(0,3),A(,0)

AB=OC=3AD=AO=

(2) 如圖2 連結(jié)AC

=3

OA=OC=3

∴矩形ABCO是正方形

∴∠BCA =45°

設(shè)∠ECG的度數(shù)為,

AE=AC

∴∠AEC =ACE=

①當(dāng)CG=EG時(shí),=

解得,不合題意,舍去

②當(dāng)CE=GE時(shí),∠ECG =EGC=

∵∠ECG+EGC+CEG=

,

解得

∴∠AEC =ACE=,不合題意,舍去

③當(dāng)CE=CG時(shí),∠CEG =CGE=

∵∠ECG+EGC+CEG=

,

解得

∴∠AEC =ACE=75°,∠CAE=30°

如圖3,連結(jié)OB,交AC于點(diǎn)Q,過EEHACH,連結(jié)BE

EH=AE=AC,BQ=AC

EH=BQ ,EHBQ且∠EHQ=90°

∴四邊形EHQB是矩形

BEAC

設(shè)直線BE的解析式為

∵點(diǎn)B3,3)在直線上

6

∴直線BE的解析式為

(3)如圖4,∵=4,點(diǎn)M是矩形ABCO的對(duì)稱中心

AO=4,AM=

A為圓心,分別以AOAM為半徑作圓,AD交小圓于P,

MMNEDN

DE切大圓于D

MN≥PD

根據(jù)垂線段最短MN≤MA+AD,

如圖5,當(dāng)射線經(jīng)過點(diǎn)M時(shí),MN=MA+AD=

的最大值是

如圖6,當(dāng)邊AD經(jīng)過點(diǎn)M,即PM重合時(shí),MN=PD

的最小值是

綜上,的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)(1)班研究性學(xué)習(xí)小組為研究全校同學(xué)課外閱讀情況,在全校隨機(jī)邀請(qǐng)了部分同學(xué)參與問卷調(diào)查,統(tǒng)計(jì)同學(xué)們一個(gè)月閱讀課外書的數(shù)量,并繪制了以下統(tǒng)計(jì)圖.

請(qǐng)根據(jù)圖中信息解決下列問題:

(1)共有多少名同學(xué)參與問卷調(diào)查;

(2)補(bǔ)全條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;

(3)全校共有學(xué)生1500人,請(qǐng)估計(jì)該校學(xué)生一個(gè)月閱讀2本課外書的人數(shù)約為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形中,,點(diǎn)是直線一動(dòng)點(diǎn),若將沿折疊,使點(diǎn)落在平面上的點(diǎn)處,連結(jié).若三點(diǎn)在一直線上,則____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的中線,點(diǎn)EAD的中點(diǎn),過點(diǎn)AAFBCBE的延長(zhǎng)線于F,連接CF

(1)求證:△AEF≌△DEB

(2)若∠BAC=90°,求證:四邊形ADCF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠C90°,AC3,BC4CD是斜邊AB上的高,點(diǎn)E在斜邊AB上,過點(diǎn)E作直線與△ABC的直角邊相交于點(diǎn)F,設(shè)AEx,△AEF的面積為y

1CD= ,AD=

2)若EFAB,當(dāng)點(diǎn)E在線段AB上移動(dòng)時(shí);

①求yx的函數(shù)關(guān)系式;(寫出自變量x的取值范圍)

②當(dāng)x取何值時(shí),y有最大值?并求其最大值

3)若F在直角邊AC上(點(diǎn)FA、C兩點(diǎn)均不重合),點(diǎn)E在斜邊AB上移動(dòng),試問:是否存在直線EF將△ABC的周長(zhǎng)和面積同時(shí)平分?若存在直線EF,求出x的值;若不存在直線EF,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一個(gè)正方形紙片AOBC放置在平面直角坐標(biāo)系中,點(diǎn)A0,4),點(diǎn)O0,0),B4,0),C44)點(diǎn).動(dòng)點(diǎn)E在邊AO上,點(diǎn)F在邊BC上,沿EF折疊該紙片,使點(diǎn)O的對(duì)應(yīng)點(diǎn)M始終落在邊AC上(點(diǎn)M不與A,C重合),點(diǎn)B落在點(diǎn)N處,MNBC交于點(diǎn)P

)如圖①,當(dāng)∠AEM30°時(shí),求點(diǎn)E的坐標(biāo);

)如圖②,當(dāng)點(diǎn)M落在AC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);

)隨著點(diǎn)MAC邊上位置的變化,△MPC的周長(zhǎng)是否發(fā)生變化?如變化,簡(jiǎn)述理由;如不變,直接寫出其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點(diǎn)C,與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B左側(cè).點(diǎn)B的坐標(biāo)為(1,0),OC=3OB,


1)求拋物線的解析式;
2)若點(diǎn)D是線段AC下方拋物線上的動(dòng)點(diǎn),求四邊形ABCD面積的最大值;
3)若點(diǎn)Ex軸上,點(diǎn)P在拋物線上.是否存在以AC,E,P為頂點(diǎn)且以AC為一邊的平行四邊形?若存在,寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】女本柔弱,為母則剛.說的是母親對(duì)子女無私的愛,母愛偉大.值此母親節(jié)來臨之際,某花店推出一款康乃馨花束,經(jīng)過近幾年的市場(chǎng)調(diào)研發(fā)現(xiàn),該花束在母親節(jié)的銷售量()與銷售單價(jià)()之間滿足如圖所示的一次函數(shù)關(guān)系,已知該花束的成本是每束元.

求出關(guān)于的函數(shù)關(guān)系式(不要求寫的取值范圍)

設(shè)該花束在母親節(jié)盈利為元,寫出關(guān)于的函數(shù)關(guān)系式;并求出當(dāng)售價(jià)定為多少元時(shí),利潤(rùn)最大;

花店開拓新的進(jìn)貨渠道,以降低成本,預(yù)計(jì)在今后的銷售中,母親節(jié)期間該花束的銷售量與銷售單價(jià)仍存在中的關(guān)系若想實(shí)現(xiàn)銷售單價(jià)為元,且銷售利潤(rùn)不低于元的銷售目標(biāo),該花束每束的成本應(yīng)不超過多少元,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了測(cè)量重慶有名的觀景點(diǎn)南山大金鷹的大致高度,小南同學(xué)使用的無人機(jī)進(jìn)行觀察,當(dāng)無人機(jī)與大金鷹側(cè)面在同一平面,且距離水平面垂直高度GF100米時(shí),小南調(diào)整攝像頭方向,當(dāng)俯角為45°時(shí),恰好可以拍攝到金鷹的頭頂A點(diǎn);當(dāng)俯角為63°時(shí),恰好可以拍攝到金鷹底座點(diǎn)E.已知大金鷹是雄踞在一人造石臺(tái)上,石臺(tái)側(cè)面CE長(zhǎng)12.5米,坡度為10.75,石臺(tái)上方BC長(zhǎng)10米,頭部A點(diǎn)位于BC中點(diǎn)正上方.則金鷹自身高度約( 。┟祝ńY(jié)果保留一位小數(shù),sin63°≈0.89,cos63°≈0.45,tan63°≈1.96

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案