【題目】已知如圖,二次函數(shù)的圖象經(jīng)過(guò)A33),與x軸正半軸交于B點(diǎn),與y軸交于C點(diǎn),ABC的外接圓恰好經(jīng)過(guò)原點(diǎn)O.

1)求B點(diǎn)的坐標(biāo)及二次函數(shù)的解析式;

2)拋物線上一點(diǎn)Qmm+3),(m為整數(shù)),點(diǎn)M為△ABC的外接圓上一動(dòng)點(diǎn),求線段QM長(zhǎng)度的范圍;

3)將△AOC繞平面內(nèi)一點(diǎn)P旋轉(zhuǎn)180°至△A'O'C'(點(diǎn)O'O為對(duì)應(yīng)點(diǎn)),使得該三角形的對(duì)應(yīng)點(diǎn)中的兩個(gè)點(diǎn)落在的圖象上,求出旋轉(zhuǎn)中心P的坐標(biāo).

【答案】(1)(4,0);;(2)≤QM≤;(3)、

【解析】

1)過(guò)點(diǎn)AADy軸于點(diǎn)D,AEx軸于點(diǎn)E,求證△ACD≌△ABE,進(jìn)而求得點(diǎn)B坐標(biāo),再將AB兩點(diǎn)坐標(biāo)代入二次函數(shù)解析式,即可解答;

2)將點(diǎn)Qm,m+3)代入二次函數(shù)解析式,求得m的值,進(jìn)而且得點(diǎn)Q坐標(biāo),根據(jù)圓的性質(zhì)得到BC是圓N的直徑,利用勾股定理即可求得BC,進(jìn)而求得N的坐標(biāo),再利用勾股定理求得QN的長(zhǎng),確定取值范圍即可;

3)分兩種情況:當(dāng)點(diǎn)A的對(duì)稱(chēng)點(diǎn),點(diǎn)O的對(duì)稱(chēng)點(diǎn)在拋物線上時(shí),利用旋轉(zhuǎn)180°可知,,設(shè)點(diǎn)的橫坐標(biāo)為m,則點(diǎn)的橫坐標(biāo)為m-3,利用列出式子,即可求得m的值,利用旋轉(zhuǎn)中心和線段中點(diǎn)的特點(diǎn),即可求得旋轉(zhuǎn)中心P的坐標(biāo);當(dāng)點(diǎn)A的對(duì)稱(chēng)點(diǎn),點(diǎn)C的對(duì)稱(chēng)點(diǎn)在拋物線上時(shí),設(shè)點(diǎn)的橫坐標(biāo)為m,則點(diǎn)的橫坐標(biāo)為m-3,同理可求得m的值以及旋轉(zhuǎn)中心P的坐標(biāo).

1)解:如圖,過(guò)點(diǎn)AADy軸于點(diǎn)D,AEx軸于點(diǎn)E,

∴∠ADC=AEB=90°

∵二次函數(shù)y軸交于點(diǎn)C

點(diǎn)C坐標(biāo)為(0,2

∵點(diǎn)A坐標(biāo)(33

DA=AE=3

∵∠DAC+CAE=90°

EAB+CAE=90°

∴∠DAC=EAB

∴△ACD≌△ABE

EB=CD=3-2=1

OB=3+1=4

∴點(diǎn)B的坐標(biāo)為(4,0

A33B4,0)代入二次函數(shù)

得:

解得:

二次函數(shù)的解析式為:

2)將點(diǎn)Qm,m+3)代入二次函數(shù)解析式得:

m1=1;m2=(舍)

m=1

∴點(diǎn)Q坐標(biāo)為(1,4)

由勾股定理得:BC=2

設(shè)圓的圓心為N

∵圓經(jīng)過(guò)點(diǎn)O,且∠COB=90°

BC是圓N的直徑,

∴圓N的半徑為,N的坐標(biāo)為(2,1

由勾股定理得,QN=

半徑r=,則≤QM≤

3)當(dāng)點(diǎn)A的對(duì)稱(chēng)點(diǎn),點(diǎn)O的對(duì)稱(chēng)點(diǎn)在拋物線上時(shí),如圖

設(shè)點(diǎn)的橫坐標(biāo)為m,則點(diǎn)的橫坐標(biāo)為m-3

得:

解得:

的坐標(biāo)為(

∴旋轉(zhuǎn)中心P的坐標(biāo)為

當(dāng)點(diǎn)A的對(duì)稱(chēng)點(diǎn),點(diǎn)C的對(duì)稱(chēng)點(diǎn)在拋物線上時(shí),如圖

設(shè)點(diǎn)的橫坐標(biāo)為m,則點(diǎn)的橫坐標(biāo)為m-3

得:

解得:

的坐標(biāo)為(

∴旋轉(zhuǎn)中心P的坐標(biāo)為

綜上所述,旋轉(zhuǎn)中心P的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A是半徑為2的⊙O外的一點(diǎn),OA4,AB切⊙O于點(diǎn)B,弦BCOA,連接AC,則圖中陰影部分的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(﹣1,0)、點(diǎn)B3,0)、點(diǎn)C4y1),若點(diǎn)Dx2y2)是拋物線上任意一點(diǎn),有下列結(jié)論:①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;②若﹣1≤x2≤4,則0≤y2≤5a;③若y2y1 x24;④一元二次方程cx2+bx+a=0的兩個(gè)根為﹣1其中正確結(jié)論的序號(hào)是( )

A.①④B.①②C.②③D.①③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】秋風(fēng)送爽,學(xué)校組織同學(xué)們?nèi)ヮU和園秋游,昆明湖西堤六橋中的玉帶橋最是令人喜愛(ài),如圖所示,玉帶橋的橋拱是拋物線形水面寬度AB10m,橋拱最高點(diǎn)C到水面的距離為6m

1)建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,求拋物線的表達(dá)式;

2)現(xiàn)有一艘游船高度是4.5m,寬度是4m,為了保證安全,船頂距離橋拱頂部至少0.5m,通過(guò)計(jì)算說(shuō)明這艘游船能否安全通過(guò)玉帶橋.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線經(jīng)過(guò)坐標(biāo)原點(diǎn)O,與x軸交于另一點(diǎn)A,頂點(diǎn)為B.求:

1)拋物線的解析式;

2AOB的面積;

3)要使二次函數(shù)的圖象過(guò)點(diǎn)(10,0),應(yīng)把圖象沿x軸向右平移 個(gè)單位

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,BC=8cmAC=6cm.點(diǎn)PB出發(fā)沿BAA運(yùn)動(dòng),速度為每秒1cm,點(diǎn)E是點(diǎn)BP為對(duì)稱(chēng)中心的對(duì)稱(chēng)點(diǎn),點(diǎn)P運(yùn)動(dòng)的同時(shí),點(diǎn)QA出發(fā)沿ACC運(yùn)動(dòng),速度為每秒2cm,當(dāng)點(diǎn)Q到達(dá)頂點(diǎn)C時(shí),P,Q同時(shí)停止運(yùn)動(dòng),設(shè)PQ兩點(diǎn)運(yùn)動(dòng)時(shí)間為t秒.

(1)當(dāng)t為何值時(shí),PQBC?

(2)設(shè)四邊形PQCB的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;

(3)四邊形PQCB面積能否是△ABC面積的?若能,求出此時(shí)t的值;若不能,請(qǐng)說(shuō)明理由;

(4)當(dāng)t為何值時(shí),△AEQ為等腰三角形?(直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等腰△ABC中,CA=CB=6,∠ACB=120°,點(diǎn)D在線段AB上運(yùn)動(dòng)(不與AB重合),將△CAD與△CBD分別沿直線CA、CB翻折得到△CAP與△CBQ,給出下列結(jié)論:

CD=CP=CQ;②∠PCQ為定值;③△PCQ面積的最小值為;④當(dāng)點(diǎn)DAB的中點(diǎn)時(shí),△PDQ是等邊三角形,其中正確結(jié)論的個(gè)數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若平面直角坐標(biāo)系內(nèi)的點(diǎn) M 滿(mǎn)足橫、縱坐標(biāo)都為整數(shù),則把點(diǎn) M 叫做整點(diǎn).例如:P(1,0)、Q(2,-2)都是整點(diǎn).拋物線 y=mx22mx+m1(m>0) x 軸交于 A、 B 兩點(diǎn),若該拋物線在 A、B 之間的部分與線段 AB 所圍成的區(qū)域(包括邊界)恰有 6 個(gè)整點(diǎn),則 m 的取值范圍是( )

A. m B. m C. m D. m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,個(gè)邊長(zhǎng)為的相鄰正方形的一邊均在同一直線上,點(diǎn),,…分別為邊,,…,的中點(diǎn),的面積為,的面積為,…的面積為,則________.(用含的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案