【題目】如圖,已知反比例函數(shù)y=﹣ 的圖象與直線y=kx(k<0)相交于點(diǎn)A、B,以AB為底作等腰三角形,使∠ACB=120°,且點(diǎn)C的位置隨著k的不同取值而發(fā)生變化,但點(diǎn)C始終在某一函數(shù)圖象上,則這個(gè)圖象所對(duì)應(yīng)的函數(shù)解析式為 .
【答案】y=
【解析】解:連接CO,過(guò)點(diǎn)A作AD⊥x軸于點(diǎn)D,過(guò)點(diǎn)C作CE⊥x軸于點(diǎn)E, ∵反比例函數(shù)y=﹣ 的圖象與直線y=kx(k<0)相交于點(diǎn)A、B,以AB為底作等腰三角形,使∠ACB=120°,
∴CO⊥AB,∠CAB=30°,
則∠AOD+∠COE=90°,
∵∠DAO+∠AOD=90°,
∴∠DAO=∠COE,
又∵∠ADO=∠CEO=90°,
∴△AOD∽△OCE,
∴ = = =tan60°= ,
∴ =( )2=3,
∵點(diǎn)A是雙曲線y=﹣ 在第二象限分支上的一個(gè)動(dòng)點(diǎn),
∴S△AOD= ×|xy|= ,
∴S△OCE= ,即 ×OE×CE= ,
∴OE×CE= ,
∴這個(gè)圖象所對(duì)應(yīng)的函數(shù)解析式為y= .
所以答案是:y= .
【考點(diǎn)精析】通過(guò)靈活運(yùn)用等腰三角形的性質(zhì),掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角)即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了響應(yīng)國(guó)家節(jié)能減排的號(hào)召,鼓勵(lì)市民節(jié)約用電,我市從2012年7月1日起,居民用電實(shí)行“一戶一表”的“階梯電價(jià)”,分三個(gè)檔次收費(fèi),第一檔是用電量不超過(guò)180千瓦時(shí)實(shí)行“基本電價(jià)”,第二、三檔實(shí)行“提高電價(jià)”,具體收費(fèi)情況如圖的折線圖,請(qǐng)根據(jù)圖象回答下列問(wèn)題;
(1)當(dāng)用電量是180千瓦時(shí)時(shí),電費(fèi)是__________元;
(2)第二檔的用電量范圍是__________;
(3)“基本電價(jià)”是__________元/千瓦時(shí);
(4)小明家8月份的電費(fèi)是328.5元,這個(gè)月他家用電多少千瓦時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD=BC,∠C=∠D=90°,下列結(jié)論中不成立的是( )
A. ∠DAE=∠CBE B. CE=DE C. △DAE與△CBE不一定全等 D. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為正方形ABCD的對(duì)角線AC上任意一點(diǎn),PE⊥AB于E,PF⊥BC于F,若AC=,則四邊形PEBF的周長(zhǎng)為( )
A. B. 2 C. 2 D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問(wèn)題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫(xiě)出了如下的證明過(guò)程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請(qǐng)你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)你完成證明過(guò)程給小強(qiáng)看,若不成立請(qǐng)你說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知y+6與x-1成正比例,且當(dāng)x=3時(shí),y=-10.
(1)求y與x的函數(shù)關(guān)系式;
(2)畫(huà)出函數(shù)的圖象.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線分別與軸、軸交于C、D兩點(diǎn),與反比例函數(shù)的圖像相交于點(diǎn)和點(diǎn),過(guò)點(diǎn)A作AM⊥y軸于點(diǎn)M,過(guò)點(diǎn)B作BN⊥x軸于點(diǎn)N,連結(jié)MN、OA、OB.下列結(jié)論:
①;②;③四邊形與四邊形MNCA的周長(zhǎng)相等;④.其中正確的個(gè)數(shù)是( )個(gè).
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,點(diǎn)A、O、B依次在直線MN上,現(xiàn)將射線OA繞點(diǎn)O沿順時(shí)針?lè)较蛞悦棵?°的速度旋轉(zhuǎn),同時(shí)射線OB繞點(diǎn)O沿逆時(shí)針?lè)较蛞悦棵?°的速度旋轉(zhuǎn),如圖2,設(shè)旋轉(zhuǎn)時(shí)間為t(0秒≤t≤90秒).
(1)用含t的代數(shù)式表示∠MOA的度數(shù).
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng)∠AOB第二次達(dá)到60°時(shí),求t的值.
(3)在旋轉(zhuǎn)過(guò)程中是否存在這樣的t,使得射線OB是由射線OM、射線OA、射線ON中的其中兩條組成的角(指大于0°而不超過(guò)180°的角)的平分線?如果存在,請(qǐng)直接寫(xiě)出t的值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在反比例函數(shù)y= (x>0)的圖象上有點(diǎn)P1、P2、P3、P4 , P5 , 它們的橫坐標(biāo)依次為2,4,6,8,10,分別過(guò)這些點(diǎn)作x軸與y軸的垂線,圖中所構(gòu)成的陰影部分的面積從左到右依次為S1 , S2 , S3 , S4 , 則S1+S2+S3+S4的值為( )
A.4.5
B.4.2
C.4
D.3.8
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com