【題目】為了響應(yīng)國家節(jié)能減排的號召,鼓勵市民節(jié)約用電,我市從2012年7月1日起,居民用電實行“一戶一表”的“階梯電價”,分三個檔次收費,第一檔是用電量不超過180千瓦時實行“基本電價”,第二、三檔實行“提高電價”,具體收費情況如圖的折線圖,請根據(jù)圖象回答下列問題;
(1)當(dāng)用電量是180千瓦時時,電費是__________元;
(2)第二檔的用電量范圍是__________;
(3)“基本電價”是__________元/千瓦時;
(4)小明家8月份的電費是328.5元,這個月他家用電多少千瓦時?
【答案】(1)108;
(2)180<x≤450;
(3)0.6;
(4)這個月他家用電500千瓦時.
【解析】
試題(1)通過函數(shù)圖象可以直接得出用電量為180千瓦時,電費的數(shù)量;
(2)從函數(shù)圖象可以看出第二檔的用電范圍;
(3)運用總費用÷總電量就可以求出基本電價;
(4)結(jié)合函數(shù)圖象可以得出小明家8月份的用電量超過450千瓦時,先求出直線BC的解析式就可以得出結(jié)論.
解:(1)由函數(shù)圖象,得
當(dāng)用電量為180千瓦時,電費為:108元.
故答案為:108;
(2)由函數(shù)圖象,得
設(shè)第二檔的用電量為x千瓦時,則180<x≤450.
故答案為:180<x≤450;
(3)基本電價是:108÷180=0.6;
故答案為:0.6
(4)設(shè)直線BC的解析式為y=kx+b,由圖象,得
,
解得:,
y=0.9x﹣121.5.
y=328.5時,
x=500.
答:這個月他家用電500千瓦時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD 內(nèi)接于⊙O,BD是⊙O的直徑,過點A作⊙O的切線AE交CD的延長線于點E,DA平分∠BDE.
(1)求證:AE⊥CD;
(2)已知AE=4cm,CD=6cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD與正方形EFGH邊長相等,下列說法:
①這個圖案可以看成正方形ABCD繞點O旋轉(zhuǎn)45°前后的圖形共同組成的;
②這個圖案可以看成△ABC繞點O分別旋轉(zhuǎn)45°,90°,135°,180°,225°前后的圖形共同組成的;
③這個圖案可以看成△BOC繞點O分別旋轉(zhuǎn)45°,90°,135°,225°,250°前后的圖形共同組成的.
其中正確的個數(shù)有( )
A. 1個 B. 2個 C. 3個 D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點A1、A2、A3、…、An(n為正整數(shù))都在數(shù)軸上.點A2在點A1的左邊,且A1A2=1;點A3在點A2的右邊,且A2A3=2;點A4在點A3的左邊,且A3A4=3;…,點A2018在點A2017的左邊,且A2017A2018=2017,若點A2018所表示的數(shù)為2018,則點A1所表示的數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB分別交y軸、x軸于A、B兩點,OA=2,tan∠ABO= ,拋物線y=﹣x2+bx+c過A、B兩點.
(1)求直線AB和這個拋物線的解析式;
(2)設(shè)拋物線的頂點為D,求△ABD的面積;
(3)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t取何值時,MN的長度l有最大值?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明受《烏鴉喝水》故事的啟發(fā),利用量桶和體積相同的小球進行了如下操作:請根據(jù)圖中給出的信息,解答下列問題:
(1)放入一個小球量桶中水面升高 cm;
(2)求放入小球后量桶中水面的高度y(cm)與小球個數(shù)x(個)之間的函數(shù)關(guān)系式;
(3)當(dāng)量桶中水面上升至距離量桶頂部3cm時,應(yīng)在量桶中放入幾個小球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義一種新運算“⊕”:a⊕b=2a﹣ab,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5
(1)求(﹣2)⊕3的值;
(2)若(﹣3)⊕x=(x+1)⊕5,求x的值;
(3)若x⊕1=2(1⊕y),求代數(shù)式x+y+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】臨海市初中第三教研區(qū)為了豐富學(xué)生課余活動,組織同學(xué)開展每周一次的社團活動,活動內(nèi)容有足球、跳繩、跳舞、籃球、象棋共5項,為方便組織,規(guī)定每位同學(xué)只能報一項活動,根據(jù)報名繪制了如下兩幅尚不完整的統(tǒng)計圖,解答下列問題:
(1)將條形統(tǒng)計圖補充完整;
(2)寫出扇形統(tǒng)計圖中的m和n的值;
(3)瑤瑤和欣欣兩名同學(xué)對足球、籃球、象棋三項活動都很感興趣,決定從三項活動中隨機抽取一項參加,利用樹狀圖或列表表示所有可能結(jié)果,并求出兩人參加同一項目的概率;
(4)由于場地限制,參加足球活動的學(xué)生人數(shù)不能超過參加其余活動學(xué)生人數(shù)的 ,那么至少幾位同學(xué)需要從參加足球活動調(diào)整到參加其余活動?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=﹣ 的圖象與直線y=kx(k<0)相交于點A、B,以AB為底作等腰三角形,使∠ACB=120°,且點C的位置隨著k的不同取值而發(fā)生變化,但點C始終在某一函數(shù)圖象上,則這個圖象所對應(yīng)的函數(shù)解析式為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com