【題目】已知如圖:ADBC,E、F分別在DC、AB延長線上.DCB=DAB,AEEF,DEA=30°.

(1)求證:DC//AB.

(2)求AFE的大小

【答案】1)證明見解析,(260°

【解析】

試題(1)根據(jù)AD∥BC得出∠ABC+∠DAB=180°,根據(jù)∠DCB=∠DAB得出∠ABC+∠DCB=180°,從而得出直線平行;(2)根據(jù)AE⊥EF得出∠AEF=90°,從而說明∠DEF=120°,根據(jù)平行線的性質(zhì)得出∠AFE的度數(shù).

試題解析:(1∵AD//BC ∴∠ABC+∠DAB=180°° ∵∠DCB=∠DAB ∴∠ABC+∠DCB=180° ∴DC//AB;

2∵AE⊥EF, ∴∠AEF=90° ∵∠DEA=30° ∴∠DEF=30°+90°=120°∵DC//AB

∴∠DEF+∠F=180° ∴∠AFE=60°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:(3.14﹣π)0+2cos45°﹣|1﹣ |+( 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解分式方程:(1;(2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,△OAB是等邊三角形,點B的坐標為(4,0),點Ca,0)是x軸上一動點,其中a≠0,將△AOC繞點A逆時針方向旋轉60°得到△ABD,連接CD

1)求證;△ACD是等邊三角形;

2)如圖2,當0a4時,△BCD周長是否存在最小值?若存在,求出a的值;若不存在,請說明理由.

3)如圖3,當點Cx軸上運動時,是否存在以B、CD為頂點的三角形是直角三角形?若存在,求出a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,EAD邊的中點,點MAB邊上一動點(不與點A重合),延長ME交射線CD于點N,連接MD,AN.

1)求證:四邊形AMDN是平行四邊形;

2)填空:AM的值為 時,四邊形AMDN是矩形;AM的值為 時,四邊形AMDN是菱形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠ABC45°CDABD,BE平分∠ABC,且BEACE,與CD相交于點F,DHBCHBEG.下列結論:①BDCD;②AD+CFBD;③CEBF;④AEBG.其中正確的個數(shù)是( 。

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖 1,在ABC 中,ACB90°,BCAC,點 D AB 上,DEAB BC E,點 F AE 的中點

1 寫出線段 FD 與線段 FC 的關系并證明;

2 如圖 2,將BDE 繞點 B 逆時針旋轉αα90°),其它條件不變,線段 FD 與線段 FC 的關系是否變化,寫出你的結論并證明;

3 BDE 繞點 B 逆時針旋轉一周,如果 BC4,BE2,直接寫出線段 BF 的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線ab互相平行的是( )

A. 如圖1,展開后測得∠1=∠2

B. 如圖2,展開后測得∠1=∠2∠3=∠4

C. 如圖3,測得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OBOC=OD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點 A 、B分別在反比例函數(shù) 的圖象上,且OA ⊥OB ,則 的值為( )

A.
B.2
C.
D.4

查看答案和解析>>

同步練習冊答案