【題目】在中,,,,點(diǎn)D在邊AB上,且,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)B運(yùn)動(dòng),以PD為邊向上做正方形,設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為秒,正方形與重疊部分的面積為.
(1)用含有的代數(shù)式表示線段的長(zhǎng).
(2)當(dāng)點(diǎn)落在的邊上時(shí),求的值.
(3)求與的函數(shù)關(guān)系式.
(4)當(dāng)點(diǎn)P在線段AD上運(yùn)動(dòng)時(shí),做點(diǎn)N關(guān)于CD的對(duì)稱(chēng)點(diǎn),當(dāng)與的某一個(gè)頂點(diǎn)的連線平分的面積時(shí),求的值.
【答案】(1)當(dāng)0t3時(shí)PD=3-t,當(dāng)3<t7時(shí),PD=t-3;(2),;(3);(4),,.
【解析】
(1)分0<t≤3時(shí),3<t≤7時(shí),兩種情形分別求解即可.
(2)分兩種情形①如圖2中,當(dāng)點(diǎn)N在AC上時(shí),②如圖3中,當(dāng)點(diǎn)N在BC上時(shí),利用平行線分線段成比例定理解決問(wèn)題即可.
(3)分三種情形:①如圖4中,當(dāng)0<t≤時(shí),重疊部分是五邊形EFPDM,②如圖5或6中.當(dāng)<t≤5時(shí),重疊部分是正方形PDMN.③如圖7中,當(dāng)5<t≤7時(shí),重疊部分是五邊形EFPDM,分別求解即可.
(4)分三種情形畫(huà)出圖形,利用平行線分線段成比例定理構(gòu)建方程即可解決問(wèn)題.
解:(1)如圖1中,作CD′⊥AB于D.
∵∠B=45°,BC=4,
∴CD′=BD′=4,
又∵CD′⊥AB,,
∴在Rt△ACD′中,
AD′=,
∵AD=3,
∴AD=AD′,
∴D′與D重合,
當(dāng)0<t≤3時(shí),PD=3﹣t.
當(dāng)3<t≤7時(shí),PD=t﹣3.
(2)①如圖2中,當(dāng)點(diǎn)N在AC上時(shí),
∵MN∥AD,
∴,
∴,
解得t=.
②如圖3中,當(dāng)點(diǎn)N在BC上時(shí),
∵MN∥BD,
∴,
∴,
解得t=5
綜上所述,滿足條件的t的值為s或5s.
(3)①如圖4中,當(dāng)0<t≤時(shí),重疊部分是五邊形EFPDM,
s=S正方形MDPN﹣S△NEF=(3﹣t)2﹣
②如圖5或6中,當(dāng)<t≤5時(shí),重疊部分是正方形PDMN,s=t2﹣6t+9
③如圖7中,當(dāng)5<t≤7時(shí),重疊部分是五邊形EFPDM,s=S正方形MNPD﹣S△EFN=(t﹣3)2﹣[(t﹣3)﹣(7﹣t)]2=﹣t2+14t﹣41.
綜上所述,.
(4)如圖8中,當(dāng)點(diǎn)N′落在中線AE上時(shí),作EK⊥BC于K,N′J⊥AB于J.
∵JN′∥EK,
∴,
則有,
解得t=1.
如圖9中,當(dāng)點(diǎn)N′落在中線BG上時(shí),作GK⊥BC于K,N′J⊥/span>AB于J.
∵N′J∥GK,
∴,
∴,
解得t=.
如圖10中,當(dāng)點(diǎn)N′落在中線CF上時(shí),
∵MN′∥DF,
∴,
∴,
解得t=.
綜上所述,滿足條件的t的值為1s或s或s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年春節(jié)期間,蘭州市開(kāi)展了以“精致蘭州志愿同行”為主題的系列志愿服務(wù)活動(dòng).金老師和程老師積極參加志愿者活動(dòng),當(dāng)時(shí)有下列四個(gè)志愿者工作崗位供他們選擇:
①“送溫暖”活動(dòng)崗位:為困難家庭打掃衛(wèi)生,為留守兒童提供學(xué)業(yè)輔導(dǎo);(分別用,表示)
②“送平安”活動(dòng)崗位:消防安全常識(shí)宣傳,人員密集場(chǎng)所維護(hù)秩序.(分別用,表示)
(1)金老師從四個(gè)崗位中隨機(jī)選取一個(gè)報(bào)名,恰好選擇“送溫暖”活動(dòng)崗位的概率是多少?
(2)若金老師和程老師各隨機(jī)從四個(gè)活動(dòng)崗位中選一個(gè)報(bào)名,請(qǐng)用樹(shù)狀圖或列表法求出他們恰好都選擇同一個(gè)崗位的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于兩點(diǎn),直線經(jīng)過(guò)點(diǎn),與拋物線的另一個(gè)交點(diǎn)為點(diǎn),點(diǎn)的橫坐標(biāo)為3,線段在線段上移動(dòng),=1,分別過(guò)點(diǎn)作軸的垂線,交拋物線于,交直線于.
(1)求拋物線的解析式;
(2)當(dāng)四邊形DEFG為平行四邊形時(shí),求出此時(shí)點(diǎn)P,Q的坐標(biāo);
(3)在線段PQ的移動(dòng)過(guò)程中,以D,E,F,G為頂點(diǎn)的四邊形面積是否有最大值,若有求出最大值,若沒(méi)有請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀下面材料:當(dāng)前,中國(guó)互聯(lián)網(wǎng)產(chǎn)業(yè)發(fā)展迅速,互聯(lián)網(wǎng)教育市場(chǎng)增長(zhǎng)率位居全行業(yè)前列.以下是根據(jù)某媒體發(fā)布的2012﹣2015年互聯(lián)網(wǎng)教育市場(chǎng)規(guī)模的相關(guān)數(shù)據(jù),繪制的統(tǒng)計(jì)圖表的一部分.
(1)2015年互聯(lián)網(wǎng)教育市場(chǎng)規(guī)模約是 億元(結(jié)果精確到1億元),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)截至2015年底,約有5億網(wǎng)民使用互聯(lián)網(wǎng)進(jìn)行學(xué)習(xí),互聯(lián)網(wǎng)學(xué)習(xí)用戶的年齡分布如圖所示,請(qǐng)你補(bǔ)全扇形統(tǒng)計(jì)圖,并估計(jì)7﹣17歲年齡段有 億網(wǎng)民通過(guò)互聯(lián)網(wǎng)進(jìn)行學(xué)習(xí);
(3)根據(jù)以上材料,寫(xiě)出你的思考、感受或建議(一條即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】今年初,新型冠狀病毒肺炎侵襲湖北,武漢是重災(zāi)區(qū),某愛(ài)心人士?jī)纱钨?gòu)買(mǎi)N95口罩支援武漢,第一次花了500000元,第二次花了770000,購(gòu)買(mǎi)了同樣的N95口罩,已知第二次購(gòu)買(mǎi)的口罩的單價(jià)是第一次的1.4倍,且比第一次多購(gòu)進(jìn)了10000個(gè),求該愛(ài)心人士第一次購(gòu)進(jìn)口罩的單價(jià).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)D是AB延長(zhǎng)線上的一點(diǎn),點(diǎn)C在⊙O上,且AC=CD,∠ACD=120°.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】湘潭市繼2017年成功創(chuàng)建全國(guó)文明城市之后,又準(zhǔn)備爭(zhēng)創(chuàng)全國(guó)衛(wèi)生城市.某小區(qū)積極響應(yīng),決定在小區(qū)內(nèi)安裝垃圾分類(lèi)的溫馨提示牌和垃圾箱,若購(gòu)買(mǎi)2個(gè)溫馨提示牌和3個(gè)垃圾箱共需550元,且垃圾箱的單價(jià)是溫馨提示牌單價(jià)的3倍.
(1)求溫馨提示牌和垃圾箱的單價(jià)各是多少元?
(2)該小區(qū)至少需要安放48個(gè)垃圾箱,如果購(gòu)買(mǎi)溫馨提示牌和垃圾箱共100個(gè),且費(fèi)用不超過(guò)10000元,請(qǐng)你列舉出所有購(gòu)買(mǎi)方案,并指出哪種方案所需資金最少?最少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,,是邊上一點(diǎn),沿直線翻折,點(diǎn)落在點(diǎn)處,如果,那么的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1和圖2,在△ABC中,AB=13,BC=14,.
探究:如圖1,AH⊥BC于點(diǎn)H,則AH=___,AC=___,△ABC的面積=___.
拓展:如圖2,點(diǎn)D在AC上(可與點(diǎn)A、C重合),分別過(guò)點(diǎn)A、C作直線BD的垂線,垂足為E、F,設(shè)BD=x,AE=m,CF=n,(當(dāng)點(diǎn)D與A重合時(shí),我們認(rèn)為=0).
(1)用含x、m或n的代數(shù)式表示及;
(2)求(m+n)與x的函數(shù)關(guān)系式,并求(m+n)的最大值和最小值;
(3)對(duì)給定的一個(gè)x值,有時(shí)只能確定唯一的點(diǎn)D,指出這樣的x的取值范圍.
發(fā)現(xiàn):請(qǐng)你確定一條直線,使得A、B、C三點(diǎn)到這條直線的距離之和最小(不必寫(xiě)出過(guò)程),并寫(xiě)出這個(gè)最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com