【題目】2019年春節(jié)期間,蘭州市開展了以“精致蘭州志愿同行”為主題的系列志愿服務(wù)活動.金老師和程老師積極參加志愿者活動,當(dāng)時有下列四個志愿者工作崗位供他們選擇:
①“送溫暖”活動崗位:為困難家庭打掃衛(wèi)生,為留守兒童提供學(xué)業(yè)輔導(dǎo);(分別用,表示)
②“送平安”活動崗位:消防安全常識宣傳,人員密集場所維護(hù)秩序.(分別用,表示)
(1)金老師從四個崗位中隨機(jī)選取一個報名,恰好選擇“送溫暖”活動崗位的概率是多少?
(2)若金老師和程老師各隨機(jī)從四個活動崗位中選一個報名,請用樹狀圖或列表法求出他們恰好都選擇同一個崗位的概率.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=(x﹣m)2+2(x﹣m)(m為常數(shù))
(1)求證:不論m為何值,該函數(shù)的圖象與x軸總有兩個不同的公共點(diǎn);
(2)當(dāng)m取什么值時,該函數(shù)的圖象關(guān)于y軸對稱?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1(注:與圖2完全相同),在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)三點(diǎn),,.
(1)求拋物線的解析式和對稱軸;
(2)是拋物線對稱軸上的一點(diǎn),求滿足的值為最小的點(diǎn)坐標(biāo)(請在圖1中探索);
(3)在第四象限的拋物線上是否存在點(diǎn),使四邊形是以為對角線且面積為的平行四邊形?若存在,請求出點(diǎn)坐標(biāo),若不存在請說明理由.(請在圖2中探索)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線
(1)當(dāng)時,求拋物線的頂點(diǎn)坐標(biāo);
(2)已知點(diǎn),拋物線與軸交于點(diǎn)(不與重合),將點(diǎn)繞點(diǎn)逆時針旋轉(zhuǎn)90°至點(diǎn),
①直接寫出點(diǎn)的坐標(biāo)(用含的代數(shù)式表示);
②若拋物線與線段有且僅有一個公共點(diǎn),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線.
(1)求拋物線的對稱軸(用含的式子去表示);
(2)若點(diǎn),,都在拋物線上,則、、的大小關(guān)系為_______;
(3)直線與軸交于點(diǎn),與軸交于點(diǎn),過點(diǎn)作垂直于軸的直線與拋物線有兩個交點(diǎn),在拋物線對稱軸右側(cè)的點(diǎn)記為,當(dāng)為鈍角三角形時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC≤BC,將△ABC沿EF折疊,使點(diǎn)A落在直角邊BC上的D點(diǎn)處,設(shè)EF與AB、AC邊分別交于點(diǎn)E、點(diǎn)F,如果折疊后△CDF與△BDE均為等腰三角形,那么∠B=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC,∠B=90°,∠C=30°,O為AC上一點(diǎn),OA=2,以O(shè)為圓心,以O(shè)A為半徑的圓與CB相切于點(diǎn)E,與AB相交于點(diǎn)F,連接OE、OF,則圖中陰影部分的面積是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠有20名工人,每人每天加工甲種零件5個或乙種零件4個.在這20名工人當(dāng)中,派x人加工甲種零件,其余的加工乙種零件,已知每加工一個甲種零件可獲利16元,每加工一個乙種零件可以獲利24元.
(1)寫出此工廠每天所獲利潤y(元)與x(人)之間的函數(shù)關(guān)系式(只寫出解析式)
(2)若要使工廠每天獲利不低于1800元,問至少要派多少人加工乙種零件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(問題發(fā)現(xiàn))
如圖1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延長CA到點(diǎn)F,使得AF=AC,連接DF、BE,則線段BE與DF的數(shù)量關(guān)系為 ,位置關(guān)系為 ;
(2)(拓展研究)
將△ADE繞點(diǎn)A旋轉(zhuǎn),(1)中的結(jié)論有無變化?僅就圖(2)的情形給出證明;
(3)(解決問題)
當(dāng)AB=2,AD=,△ADE旋轉(zhuǎn)得到D,E,F三點(diǎn)共線時,直接寫出線段DF的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com