【題目】已知ADABC的邊BC上的中線,AB=12,AC=8,則邊BC及中線AD的取值范圍是(

A. B.

C. D.

【答案】A

【解析】

BC邊的取值范圍可在ABC中利用三角形的三邊關(guān)系進(jìn)行求解,而對(duì)于中線AD的取值范圍可延長(zhǎng)AD至點(diǎn)E,使AD=DE,得出ACD≌△EBD,進(jìn)而在ABE中利用三角形三邊關(guān)系求解.

如圖所示,

ABC中,則AB-ACBCAB+AC,

12-8BC12+84BC20,

延長(zhǎng)AD至點(diǎn)E,使AD=DE,連接BE,

ADABC的邊BC上的中線,

BD=CD,

又∠ADC=BDE,AD=DE

∴△ACD≌△EBDSAS),

BE=AC,

ABE中,AB-BEAEAB+BE,即AB-ACAEAB+AC,

12-8AE12+8,即4AE20,

2AD10

故選A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AB=AC,ABC的平分線BE交⊙O于點(diǎn)E,ACB的平分線CF交⊙O于點(diǎn)F,BECF相交于點(diǎn)D,四邊形AFDE是菱形嗎?請(qǐng)證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),過A點(diǎn)作AG∥DB,交CB的延長(zhǎng)線于點(diǎn)G.

(1)求證:DE∥BF;

(2)若∠G=90,求證:四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,點(diǎn)D在邊AB上,線段DC繞點(diǎn)D逆時(shí)針旋轉(zhuǎn),端點(diǎn)C恰巧落在邊AC上的點(diǎn)E處.如果

mn滿足的關(guān)系式(用含n的代數(shù)式表示m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分線EF分別交AD,BC于點(diǎn)E,F(xiàn),垂足為點(diǎn)O.

(1)連接AF,CE,求證:四邊形AFCE為菱形;

(2)求菱形AFCE的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)化簡(jiǎn):

(2)計(jì)算:

(3)化簡(jiǎn):;

(4)已知求代數(shù)式的值;

(5)已知求代數(shù)式的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊△ABC中,BC8cm,射線AGBC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts).

1)連接EF,當(dāng)EF經(jīng)過AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF

2)①當(dāng)t  時(shí),以AF、C、E為頂點(diǎn)的四邊形是平行四邊形(直接寫出結(jié)果);

②當(dāng)t  時(shí),四邊形ACFE是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長(zhǎng)方形ABCD的面積為300cm2,長(zhǎng)和寬的比為3:2.在此長(zhǎng)方形內(nèi)沿著邊的方向能否并排裁出兩個(gè)面積均為147cm2的圓(π取3),請(qǐng)通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國(guó)東漢初年編訂的一部數(shù)學(xué)經(jīng)典著作.在它的“方程”一章里,一次方程組是由算籌布置而成的.《九章算術(shù)》中的算籌圖是豎排的,為看圖方便,我們把它改為橫排,如圖1、圖2.圖中各行從左到右列出的算籌數(shù)分別表示未知數(shù)x,y的系數(shù)與相應(yīng)的常數(shù)項(xiàng).把圖1所示的算籌圖用我們現(xiàn)在所熟悉的方程組形式表述出來,就是,類似地,圖2所示的算籌圖我們可以表述為(

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案