【題目】如圖,在等邊△ABC中,BC=8cm,射線AG∥BC,點(diǎn)E從點(diǎn)A出發(fā)沿射線AG以1cm/s的速度運(yùn)動(dòng),同時(shí)點(diǎn)F從點(diǎn)B出發(fā)沿射線BC以2cm/s的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(s).
(1)連接EF,當(dāng)EF經(jīng)過(guò)AC邊的中點(diǎn)D時(shí),求證:△ADE≌△CDF;
(2)①當(dāng)t為 時(shí),以A、F、C、E為頂點(diǎn)的四邊形是平行四邊形(直接寫(xiě)出結(jié)果);
②當(dāng)t為 時(shí),四邊形ACFE是菱形.
【答案】(1)見(jiàn)解析 (2)①或8; ②8.
【解析】
(1)由題意得到AD=CD,再由AG與BC平行,利用兩直線平行內(nèi)錯(cuò)角相等得到兩對(duì)角相等,利用AAS即可得證;
(2)①分別從當(dāng)點(diǎn)F在C的左側(cè)時(shí)與當(dāng)點(diǎn)F在C的右側(cè)時(shí)去分析,由當(dāng)AE=CF時(shí),以A、C、E、F為頂點(diǎn)四邊形是平行四邊形,可得方程,解方程即可求得答案;
②若四邊形ACFE是菱形,則有CF=AC=AE=8,由E的速度求出E運(yùn)動(dòng)的時(shí)間即可.
(1)證明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D為AC的中點(diǎn),
∴AD=CD,
∵在△ADE和△CDF中,
,
∴△ADE≌△CDF(AAS);
(2)解:①當(dāng)點(diǎn)F在C的左側(cè)時(shí),根據(jù)題意得:AE=tcm,BF=2tcm,
則CF=BC-BF=6-2t(cm),
∵AG∥BC,
∴當(dāng)AE=CF時(shí),四邊形AECF是平行四邊形,
即t=8-2t,
解得:t=;
當(dāng)點(diǎn)F在C的右側(cè)時(shí),根據(jù)題意得:AE=tcm,BF=2tcm,
則CF=BF-BC=2t-8(cm),
∵AG∥BC,
∴當(dāng)AE=CF時(shí),四邊形AEFC是平行四邊形,
即t=2t-8,
解得:t=8;
綜上可得:當(dāng)t=或8s時(shí),以A、C、E、F為頂點(diǎn)四邊形是平行四邊形.
②若四邊形ACFE是菱形,則有CF=AC=AE=8,
則此時(shí)的時(shí)間t=8÷1=8(s).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,第一象限內(nèi)長(zhǎng)方形ABCD,AB∥y軸,點(diǎn)A(1,1),點(diǎn)C(a,b),滿足 +|b﹣3|=0.
(1)求長(zhǎng)方形ABCD的面積.
(2)如圖2,長(zhǎng)方形ABCD以每秒1個(gè)單位長(zhǎng)度的速度向右平移,同時(shí)點(diǎn)E從原點(diǎn)O出發(fā)沿x軸以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①當(dāng)t=4時(shí),直接寫(xiě)出三角形OAC的面積為 ;
②若AC∥ED,求t的值;
(3)在平面直角坐標(biāo)系中,對(duì)于點(diǎn)P(x,y),我們把點(diǎn)P′(﹣y+1,x+1)叫做點(diǎn)P的伴隨點(diǎn),已知點(diǎn)A1的伴隨點(diǎn)為A2,點(diǎn)A2的伴隨點(diǎn)為A3,點(diǎn)A3的伴隨點(diǎn)為A4,…,這樣依次得到點(diǎn)A1,A2,A3,…,An.
①若點(diǎn)A1的坐標(biāo)為(3,1),則點(diǎn)A3的坐標(biāo)為 ,點(diǎn)A2014的坐標(biāo)為 ;
②若點(diǎn)A1的坐標(biāo)為(a,b),對(duì)于任意的正整數(shù)n,點(diǎn)An均在x軸上方,則a,b應(yīng)滿足的條件為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】等腰△ABC中,AB=AC,∠A=36°,D是AC上的一點(diǎn),AD=BD,則以下結(jié)論中正確的有( )
①△BCD是等腰三角形;②點(diǎn)D是線段AC的黃金分割點(diǎn);③△BCD∽△ABC;④BD平分∠ABC.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AD是△ABC的邊BC上的中線,AB=12,AC=8,則邊BC及中線AD的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】填空,把下面的推理過(guò)程補(bǔ)充完整,并在括號(hào)內(nèi)注明理由:
如圖,已知A、B、C、D在同一直線上,AE∥DF,AC=BD,∠E=∠F,求證:BE∥CF.
證明:∵AE∥DF(已知)
∴_________(兩直線平行,內(nèi)錯(cuò)角相等)
∵AC=BD(已知)
又∵AC=AB+BC,BD=BC+CD
∴________(等式的性質(zhì))
∵∠E=∠F(已知)
∴△ABE≌△DCF(___________)
∴∠ABE=∠DCF(_________________)
∵ABF+∠CBE=180°,∠DCF+∠BCF=180°
∴∠CBE=∠BCF(__________________)
∴BE∥CF(________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC被平行光線照射,CD⊥AB于D,AB在投影面上.
(1)指出圖中AC的投影是什么?CD與BC的投影呢?
(2)探究:當(dāng)△ABC為直角三角形(∠ACB=90°)時(shí),易得AC2=AD·AB,此時(shí)有如下結(jié)論:直角三角形一直角邊的平方等于它在斜邊射影與斜邊的乘積,這一結(jié)論我們稱(chēng)為射影定理.通過(guò)上述結(jié)論的推理,請(qǐng)證明以下兩個(gè)結(jié)論.
①BC2=BD·AB;②CD2=AD·BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線AB分別與x軸、y軸交于點(diǎn)B、C,與直線OA交于點(diǎn)A.已知點(diǎn)A的坐標(biāo)為(﹣3,5),OC=4.
(1)分別求出直線AB、AO的解析式;
(2)求△ABO的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P為邊長(zhǎng)為2的正方形ABCD的對(duì)角線BD上任一點(diǎn),過(guò)點(diǎn)P作PE⊥BC于點(diǎn)E,PF⊥CD于點(diǎn)F,連接EF.給出以下4個(gè)結(jié)論:①AP=EF;②AP⊥EF;③EF最短長(zhǎng)度為;④若∠BAP=30°時(shí),則EF的長(zhǎng)度為2.其中結(jié)論正確的有( 。
A. ①②③B. ①②④C. ②③④D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在直角梯形AOBC中,AC∥OB,CB⊥OB,OB=18,BC=12,AC=9,對(duì)角線OC、AB交于點(diǎn)D,點(diǎn)E、F、G分別是CD、BD、BC的中點(diǎn),以O(shè)為原點(diǎn),直線OB為x軸建立平面直角坐標(biāo)系,則G、E、D、F四個(gè)點(diǎn)中與點(diǎn)A在同一反比例函數(shù)圖象上的是( 。
A. 點(diǎn)G B. 點(diǎn)E C. 點(diǎn)D D. 點(diǎn)F
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com