【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式及點C的坐標(biāo);
(2)直線y=﹣x﹣2與該拋物線在第四象限內(nèi)交于點D,與x軸交于點F,連接AC,CD,線段AC與線段DF交于點G,求證:△AGF≌△CGD;
(3)直線y=m(m>0)與該拋物線的交點為M,N(點M在點N的左側(cè)),點M關(guān)于y軸的對稱點為點M′,點H的坐標(biāo)為(1,0),若四邊形NHOM′的面積為,求點H到OM′的距離d.
【答案】(1) y=x2﹣x﹣3,C(0,-3);(2)見解析;(3)
【解析】
(1)根據(jù)拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點,可得拋物線的解析式;
(2)根據(jù)F(-2,0),A(-1,0),可得AF=1,再根據(jù)點D的坐標(biāo)為(1,-3),點C的坐標(biāo)為(0,-3),可得CD∥x軸,CD=1,再根據(jù)∠AFG=∠CDG,∠FAG=∠DCG,即可判定△AGF≌△CGD;
(3)根據(jù)軸對稱的性質(zhì)得出OH=1=M'N,進而判定四邊形OM'NH是平行四邊形,再根據(jù)四邊形OM'NH的面積為,求得OP=,再根據(jù)點M的坐標(biāo)為(,),得到PM'= Rt△OPM'中,運用勾股定理可得OM'=,最后根據(jù)OM'×d=,即可得到d=.
(1)∵拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(2,0)兩點,
∴,
解得,
∴該拋物線的解析式y=x2﹣x﹣3.
令x=0,則y=﹣3,
∴C(0,﹣3);
(2)證明:∵直線EF的解析式為y=﹣x﹣2,
∴當(dāng)y=0時,x=﹣2,
∴F(﹣2,0),OF=2,
∵A(﹣1,0),
∴OA=1,
∴AF=2﹣1=1,
由解得,,
∵點D在第四象限,
∴點D的坐標(biāo)為(1,﹣3),
∵點C的坐標(biāo)為(0,﹣3),
∴CD∥x軸,CD=1,
∴∠AFG=∠CDG,∠FAG=∠DCG,
在△AGF與△CGD中
∴△AGF≌△CGD(ASA);
(3)∵拋物線的對稱軸為x=﹣=,直線y=m(m>0)與該拋物線的交點為M,N,
∴點M、N關(guān)于直線x=對稱,
設(shè)N(t,m),則M(1﹣t,m),
∵點 M關(guān)于y軸的對稱點為點M',
∴M'(t﹣1,m),
∴點M'在直線y=m上,
∴M'N∥x軸,
∴M'N=t﹣(t﹣1)=1,
∵H(1,0),
∴OH=1=M'N,
∴四邊形OM'NH是平行四邊形,
設(shè)直線y=m與y軸交于點P,
∵四邊形OM'NH的面積為,
∴OH×OP=1×m=,即m=,
∴OP=,
當(dāng)x2﹣x﹣3=時,
解得x1=﹣,x2=,
∴點M的坐標(biāo)為(﹣,),
∴M'(,),即PM'=,
∴Rt△OPM'中,OM'==,
∵四邊形OM'NH的面積為 ,
∴OM'×d=,
∴d=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】超市銷售某種兒童玩具,如果每件利潤為40元(市場管理部門規(guī)定,該種玩具每件利潤不能超過60元),每天可售出50件.根據(jù)市場調(diào)查發(fā)現(xiàn),銷售單價每增加2元,每天銷售量會減少1件.設(shè)銷售單價增加元,每天售出件.
(1)請寫出與之間的函數(shù)表達式;
(2)當(dāng)為多少時,超市每天銷售這種玩具可獲利潤2250元?
(3)設(shè)超市每天銷售這種玩具可獲利元,當(dāng)為多少時最大,最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校數(shù)學(xué)興趣小組利用自制的直角三角形硬紙板DEF來測量操場旗桿AB的高度,他們通過調(diào)整測量位置,使斜邊DF與地面保持平行,并使邊DE與旗桿頂點A在同一直線上,已知DE=1米,EF=0.5米,測點D到地面的距離DG=3米,到旗桿的水平距離DC=40米,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在Rt△ABC中,∠C=90°,BC=1,AC=4,把邊長分別為,,,…,的n個正方形依次放入△ABC中,則第n個正方形的邊長_______________(用含n的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)的圖象如圖所示,以下結(jié)論:①abc>0;②4ac<b2;③2a+b>0;④其頂點坐標(biāo)為(,﹣2);⑤當(dāng)x<時,y隨x的增大而減;⑥a+b+c>0正確的有( 。
A. 3個 B. 4個 C. 5個 D. 6個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點A,B的坐標(biāo)分別為(4,0),(4,3),動點M,N分別從O,B同時出發(fā).以每秒1個單位的速度運動.其中,點M沿OA向終點A運動,點N沿BC向終點C運動.過點M作MP⊥OA,交AC于P,連接NP,已知動點運動了x秒.
(1)求P點的坐標(biāo)(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達式,并求出面積S的最大值及相應(yīng)的x值;
(3)設(shè)四邊形OMPC的面積為S1,四邊形ABNP的面積為S2,請你就x的取值范圍討論S1與S2的大小關(guān)系并說明理由;
(4)當(dāng)x為何值時,△NPC是一個等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)
(1)寫出函數(shù)圖象的開口方向、頂點坐標(biāo)和對稱軸.
(2)判斷點是否在該函數(shù)圖象上,并說明理由.
(3)求出以該拋物線與兩坐標(biāo)軸的交點為頂點的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=36°,AC=AB=2,將△ABC繞點B逆時針方向旋轉(zhuǎn)得到△DBE,使點E在邊AC上,DE交AB于點F,則△AFE與△DBF的面積之比等于( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了節(jié)省材料,某水產(chǎn)養(yǎng)殖戶利用水庫的岸堤(岸堤足夠長)為一邊,用總長為80m的圍網(wǎng)在水庫中圍成了如圖所示的①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等.設(shè)BC的長度為xm,矩形區(qū)域ABCD的面積為ym2.
(1)求AE的長(用x的代數(shù)式表示)
(2)當(dāng)y=108m2時,求x的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com