【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測速,所有車輛限速40千米/小時數(shù)學(xué)實踐活動小組設(shè)計了如下活動:在l上確定A,B兩點,并在AB路段進行區(qū)間測速.在l外取一點P,作PCl,垂足為點C.測得PC=30米,∠APC=71°,BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學(xué)的數(shù)學(xué)知識說明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

【答案】該車沒有超速.

【解析】先求得AC=PCtanAPC=87、BC=PCtanBPC=21,據(jù)此得出AB=AC﹣BC=87﹣21=66,從而求得該車通過AB段的車速,比較大小即可得.

RtAPC中,AC=PCtanAPC=30tan71°≈30×2.90=87,

RtBPC中,BC=PCtanBPC=30tan35°≈30×0.70=21,

AB=AC﹣BC=87﹣21=66,

∴該汽車的實際速度為=11m/s,

又∵40km/h≈11.1m/s,

∴該車沒有超速.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,有理數(shù),,在數(shù)軸上所對應(yīng)的點分別是,三點,且,滿足;;多項式是關(guān)于的二次三項式.

1,的值分別是 (直接寫出答案);

2)若數(shù)軸上點,之間有一動點,且點對應(yīng)的數(shù)為,化簡;

3)若點在數(shù)軸上以每秒1個單位的速度向左運動,同時點和點在數(shù)軸上分別以每秒個單位長度和4個單位長度的速度向右運動(其中),若在整個運動過程中,點到點的距離與點到點的距離差始終不變,求運動幾秒后點與點的距離為13個單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于每個正整數(shù),設(shè)表示的末位數(shù)字.例如:的末位數(shù)字),的末位數(shù)字),的末位數(shù)字),的值為(

A.4040B.4038C.0D.4042

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點表示數(shù),點表示數(shù)點表示數(shù),且滿足

1 , ,

2)若將數(shù)軸折疊,使得點與點重合,則點與表示 的數(shù)的點重合;

3)點以每秒3個單位長度的速度從點向右運動.點以每秒2個單位長度的速度從點向右運動(點、點同時出發(fā)),經(jīng)過幾秒,點、點分別到點的距離相等?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻、便捷.某校?shù)學(xué)興趣小組設(shè)計了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動共調(diào)查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 如圖①所示,在ABC中,AD是三角形的高,且AD=6cm,E是一個動點,由BC移動,其速度與時間的變化關(guān)系如圖②所示,已知BC=8cm

1)由圖②,E點運動的時間為______s,速度為______cm/s

2)求當E點在運動過程中ABE的面積y與運動時間x之間的關(guān)系式;

3)當E點停止后,求ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC與∠ACB的平分線交于點O,過點O作DE//BC,分別交AB,AC于點D,E,若AB=4,AC=3,則△ADE的周長是_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=AD=5,BC=CD且BCAB,BD=8.給出以下判斷:

AC垂直平分BD;

四邊形ABCD的面積S=ACBD;

順次連接四邊形ABCD的四邊中點得到的四邊形可能是正方形;

當A,B,C,D四點在同一個圓上時,該圓的半徑為;

ABD沿直線BD對折,點A落在點E處,連接BE并延長交CD于點F,當BFCD時,點F到直線AB的距離為

其中正確的是_____.(寫出所有正確判斷的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC,BD交于點0,過點0的直線分別交邊AD,BC于點E,F(xiàn),EF=6.則AE2+BF2的值為(

A. 9 B. 16 C. 18 D. 36

查看答案和解析>>

同步練習(xí)冊答案