【題目】如圖,在四邊形ABCD中,AB=AD=5,BC=CD且BCAB,BD=8.給出以下判斷:

AC垂直平分BD;

四邊形ABCD的面積S=ACBD;

順次連接四邊形ABCD的四邊中點得到的四邊形可能是正方形;

當A,B,C,D四點在同一個圓上時,該圓的半徑為

ABD沿直線BD對折,點A落在點E處,連接BE并延長交CD于點F,當BFCD時,點F到直線AB的距離為

其中正確的是_____.(寫出所有正確判斷的序號)

【答案】①③④

【解析】依據AB=AD=5,BC=CD,可得AC是線段BD的垂直平分線,故①正確;依據四邊形ABCD的面積S=,故②錯誤;依據AC=BD,可得順次連接四邊形ABCD的四邊中點得到的四邊形是正方形,故③正確;當A,B,C,D四點在同一個圓上時,設該圓的半徑為r,則r2=(r﹣3)2+42,得r=,故④正確;連接AF,設點F到直線AB的距離為h,由折疊可得,四邊形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,依據SBDE=×BD×OE=×BE×DF,可得DF=,進而得出GF=,再根據SABF=S梯形ABFD﹣SADF,即可得到h=,故⑤錯誤.

∵在四邊形ABCD中,AB=AD=5,BC=CD,

AC是線段BD的垂直平分線,故①正確;

四邊形ABCD的面積S=,故②錯誤;

AC=BD時,順次連接四邊形ABCD的四邊中點得到的四邊形是正方形,故③正確;

A,B,C,D四點在同一個圓上時,設該圓的半徑為r,則r2=(r﹣3)2+42,

r=,故④正確;

ABD沿直線BD對折,點A落在點E處,連接BE并延長交CD于點F,如圖所示,

連接AF,設點F到直線AB的距離為h,

由折疊可得,四邊形ABED是菱形,AB=BE=5=AD=GD,BO=DO=4,

AO=EO=3,

SBDE=×BD×OE=×BE×DF,

DF=,

BFCD,BFAD,

ADCD,GF=,

SABF=S梯形ABFD﹣SADF

×5h=×(5+5+)××5×,

解得h=,故⑤錯誤,

故答案為:①③④

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的三個頂點坐標為A(-44),B(-31),C(1,2)

1)將ABC向右平移5個單位,得到A1B1C1,畫出圖形,并直接寫出A1的坐標;

2)作出A1B1C1關于x軸對稱的圖形A2B2C2,并直接寫出C2點的坐標。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設置了區(qū)間測速如圖,學校附近有一條筆直的公路l,其間設有區(qū)間測速,所有車輛限速40千米/小時數(shù)學實踐活動小組設計了如下活動:在l上確定A,B兩點,并在AB路段進行區(qū)間測速.在l外取一點P,作PCl,垂足為點C.測得PC=30米,∠APC=71°,BPC=35°.上午9時測得一汽車從點A到點B用時6秒,請你用所學的數(shù)學知識說明該車是否超速.(參考數(shù)據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點B逆時針旋轉90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點B順時針旋轉90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,菱形OABC的邊長為2,點A在第一象限,點C在x軸正半軸上,AOC=60°,若將菱形OABC繞點O順時針旋轉75°,得到四邊形OA′B′C′,則點B的對應點B′的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司分兩次采購甲、乙兩種商品,具體情況如下:

商品

花費資金

次數(shù)

第一次采購件數(shù)

10

15

350

第二次采購件數(shù)

15

10

375

1)求甲、乙商品每件各多少元?

2)公司計劃第三次采購甲、乙兩種商品共31件,要求花費資金不超過475元,問最多可購買甲商品多少件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨州市新水一橋(如圖1)設計靈感來源于市花﹣﹣蘭花,采用蝴蝶蘭斜拉橋方案,設計長度為258米,寬32米,為雙向六車道,2018年4月3日通車.斜拉橋又稱斜張橋,主要由索塔、主梁、斜拉索組成.某座斜拉橋的部分截面圖如圖2所示,索塔AB和斜拉索(圖中只畫出最短的斜拉索DE和最長的斜拉索AC)均在同一水平面內,BC在水平橋面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.

(1)求最短的斜拉索DE的長;

(2)求最長的斜拉索AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,在△ABC中,OBOC分別平分∠ABC和∠ACB,過ODEBC,分別交ABAC于點D、E,若DE=8,則線段BD+CE的長為

A. 5B. 6C. 7D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一扇窗戶如圖1所示,窗框和窗扇用滑塊鉸鏈連接.如圖2是圖1滑塊鉸鏈的平面示意圖,滑軌MN安裝在窗框上,托懸臂DE安裝在窗扇上,支點4處裝有滑塊,滑塊可以左右滑動,支點B,C,D在一條直線上,延長DEMN于點F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.

(1)當∠CAB=35 時,求窗扇與窗框的夾角∠DFB的度數(shù).

(2)當窗扇關閉時,圖中點E,A,D,C,B都在滑軌MN上.求此時點A與點B之間的距離.

(3)在(2)的前提下,將窗戶推開至四邊形ACDE為矩形時,求點A處的滑塊移動的距離.

查看答案和解析>>

同步練習冊答案