【題目】已知,有理數(shù),,在數(shù)軸上所對應(yīng)的點(diǎn)分別是,三點(diǎn),且,,滿足;多項(xiàng)式是關(guān)于的二次三項(xiàng)式.

1,的值分別是 (直接寫出答案);

2)若數(shù)軸上點(diǎn)之間有一動點(diǎn),且點(diǎn)對應(yīng)的數(shù)為,化簡

3)若點(diǎn)在數(shù)軸上以每秒1個單位的速度向左運(yùn)動,同時點(diǎn)和點(diǎn)在數(shù)軸上分別以每秒個單位長度和4個單位長度的速度向右運(yùn)動(其中),若在整個運(yùn)動過程中,點(diǎn)到點(diǎn)的距離與點(diǎn)到點(diǎn)的距離差始終不變,求運(yùn)動幾秒后點(diǎn)與點(diǎn)的距離為13個單位長度.

【答案】1-2,1,5;(24y-8;(3t=4

【解析】

1)由非負(fù)性和二次三項(xiàng)式的定義可求a,b,c的值;
2)由y的取值范圍,化簡可求解;
3)先求出m的值,再由題意列出方程,求解即可.

1)∵(b-12+|c-5|=0,
b=1,c=5
∵多項(xiàng)式x|a|+a-2x+7是關(guān)于x的二次三項(xiàng)式,
a=-2,
故答案為:-2,1,5;
2)∵數(shù)軸上點(diǎn)BC之間有一動點(diǎn)P,
1y5;
|y|-2|y-5|+|y+2|=y-25-y+y+2=4y-8
3)∵點(diǎn)B到點(diǎn)C的距離與點(diǎn)B到點(diǎn)A的距離差始終不變,
[5+4t-1+mt]-[1+mt--2-t]=1+3-2mt是定值,
m=,
∵點(diǎn)B與點(diǎn)A的距離為13個單位長度.
∴(1+t--2-t=13,
t=4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC 中,∠C=90°,∠BAC 的平分線 AD BC于點(diǎn) D,過點(diǎn) D DEAD AB 于點(diǎn) E,以 AE 為直徑作⊙O

(1)求證:BC 是⊙O 的切線;

(2)若 AC=3,BC=4,求 BE 的長.

(3)在(2)的條件中,求 cosEAD 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】永祚寺雙塔又名凌霄雙塔,是山西省會太原現(xiàn)存古建筑中最高的建筑位于太原市城區(qū)東南向山腳畔.?dāng)?shù)學(xué)活動小組的同學(xué)對其中一個塔進(jìn)行了測量.測量方法如下:如圖所示,間接測得該塔底部點(diǎn)B到地面上一點(diǎn)E的距離為48 m,塔的頂端為點(diǎn)A,ABCB,在點(diǎn)E處豎直放一根標(biāo)桿,其頂端為DBE的延長線上找一點(diǎn)C,使CD,A三點(diǎn)在同一直線上,測得CE2 m.

(1)方法1,已知標(biāo)桿DE2.2 m,求該塔的高度;

(2)方法2,測量得∠ACB47.5°,已知tan47.5°1.09,求該塔的高度;

(3)假如該塔的高度在方法1和方法2測得的結(jié)果之間你認(rèn)為該塔的高度大約是多少米?

   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)如圖1,在ABC中,∠ACB=90°,ACBC,直線l過點(diǎn)C,點(diǎn)A,B在直線l同側(cè),BDl,AEl,垂足分別為D,E.求證:AEC≌△CDB

(2)如圖2,AEAB,且AEAB,BCCD,且BCCD,利用(1)中的結(jié)論,請按照圖中所標(biāo)注的數(shù)據(jù)計算圖中實(shí)線所圍成的圖形的面積S=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位在五月份準(zhǔn)備組織部分員工到背景旅游7天,現(xiàn)聯(lián)系了甲、乙兩家旅行社,兩家旅行社報價均為每人7天共2000天,兩家旅行社同時都對10人以上的團(tuán)體推出了優(yōu)惠舉措;甲旅行社對每位員工七五折優(yōu)惠;而乙旅行社是免去一位員工的費(fèi)用,其余員工八折優(yōu)惠.

1)如果設(shè)參加旅游的員工共有人,則甲旅行社的費(fèi)用為 元,乙旅行社的費(fèi)用為 元;(用含的式子表示,并化簡)

2)假如這個單位有20名員工參加旅游,該單位選擇哪一家旅行社比較合算?并說明理由.

3)假如這7天的日期之和為63的倍數(shù),則他們可能于五月幾號出發(fā)?(寫出所有符合條件的可能性,并寫出簡單的計算過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AC=BC,射線AP交邊BC于點(diǎn)E,點(diǎn)D是射線AP上一點(diǎn),連接BD、CD .

(1)如圖1,當(dāng)∠CAB=45°,BDP=90°時,請直接寫出DADB、DC之間滿足的數(shù)量關(guān)系為:

(2)如圖2,當(dāng)∠CAB=30°,BDP=60°時,試猜想:DADB、DC之間具有怎樣的數(shù)量關(guān)系?并說明理由.

(3)如圖3,當(dāng)∠ACB=,BDP=,若之間滿足,則DADB、DC之間的數(shù)量關(guān)系為 .(請直接寫出結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CDEF相交于點(diǎn)O,且∠AOC=90°,∠AOE=140°,

1)直線AB與直線______垂直,記作______

2)直線AB與直線______斜交,夾角的大小為______;

3)直線_____與直線______夾角的大小為50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的三個頂點(diǎn)坐標(biāo)為A(-4,4),B(-3,1),C(1,2)

1)將ABC向右平移5個單位,得到A1B1C1,畫出圖形,并直接寫出A1的坐標(biāo);

2)作出A1B1C1關(guān)于x軸對稱的圖形A2B2C2,并直接寫出C2點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測速,所有車輛限速40千米/小時數(shù)學(xué)實(shí)踐活動小組設(shè)計了如下活動:在l上確定A,B兩點(diǎn),并在AB路段進(jìn)行區(qū)間測速.在l外取一點(diǎn)P,作PCl,垂足為點(diǎn)C.測得PC=30米,∠APC=71°,BPC=35°.上午9時測得一汽車從點(diǎn)A到點(diǎn)B用時6秒,請你用所學(xué)的數(shù)學(xué)知識說明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)

查看答案和解析>>

同步練習(xí)冊答案