【題目】如圖,在中, ,分別以點為圓心,的長為半徑作弧,兩弧交于點,連接則四邊形的面積為(

A.B.C.D.

【答案】D

【解析】

連接BDACO,由已知得△ACD為等邊三角形且BDAC的垂直平分線,然后解直角三角形解得AC、BO、BD的值,進而代入三角形面積公式即可求解.

連接BDACO,

由作圖過程知,AD=AC=CD,

∴△ACD為等邊三角形,

∴∠DAC=60,

AB=BC,AD=CD,

BD垂直平分AC即:BDAC,AO=OC,

RtAOB中,

BO=AB·sin30=,

AO=AB·cos30=,AC=2AO=3,

RtAOD中,AD=AC=3,DAC=60,

DO=AD·sin60=

=,

故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】我市某學校落實立德樹人根本任務,構(gòu)建五育并舉教育體系,開設了“廚藝、園藝、電工、木工、編織”五大類勞動課程.為了解七年級學生對每類課程的選擇情況,隨機抽取了七年級若干名學生進行調(diào)查(每人只選一類最喜歡的課程),將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖:

1)本次隨機調(diào)查的學生人數(shù)為 人;

2)補全條形統(tǒng)計圖;

3)若該校七年級共有800名學生,請估計該校七年級學生選擇“廚藝”勞動課程的人數(shù);

4)七(1)班計劃在“園藝、電工、木工、編織”四大類勞動課程中任選兩類參加學校期末展示活動,請用列表或畫樹狀圖的方法,求恰好選中“園藝、編織”這兩類勞動課程的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,反比例函數(shù)y=kx-1(x>0)的圖象經(jīng)過點A(1,2)和點B(m,n)(m>1),過點B作y軸的垂線,垂足為C.

(1)求該反比例函數(shù)解析式;

(2)當△ABC面積為2時,求點B的坐標.

(3)P為線段AB上一動點(P不與A、B重合),在(2)的情況下,直線y=ax﹣1與線段AB交于點P,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某班男生分成甲、乙兩組進行引體向上的專項訓練,已知甲組有名男生,并對兩組男生訓練前、后引體向上的個數(shù)進行統(tǒng)計分析,得到乙組男生訓練前、后引體向上的平均個數(shù)分別是個和個,及下面不完整的統(tǒng)計表和統(tǒng)計圖.

甲組男生訓練前、后引體向上個數(shù)統(tǒng)計表(單位:個)

甲組

男生

男生

男生

男生

男生

男生

平均個數(shù)

眾數(shù)

中位數(shù)

訓練前

訓練后

根據(jù)以上信息,解答下列問題:

(1) , , ;

(2)甲組訓練后引體向上的平均個數(shù)比訓練前增長了 ;

(3)你認為哪組訓練效果好?并提供一個支持你觀點的理由;

(4)小華說他發(fā)現(xiàn)了一個錯誤:“乙組訓練后引體向上個數(shù)不變的人數(shù)占該組人數(shù)的,所以乙組的平均個數(shù)不可能提高個這么多.”你同意他的觀點嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了了解學生關(guān)注熱點新聞的情況,“兩會”期間,小明對班級同學一周內(nèi)收看“兩會”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計如圖所示(其中男生收看次的人數(shù)沒有標出).

根據(jù)上述信息,解答下列各題:

×

(1)該班級女生人數(shù)是__________,女生收看“兩會”新聞次數(shù)的中位數(shù)是________;

(2)對于某個群體,我們把一周內(nèi)收看某熱點新聞次數(shù)不低于次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體對某熱點新聞的“關(guān)注指數(shù)”.如果該班級男生對“兩會”新聞的“關(guān)注指數(shù)”比女生低,試求該班級男生人數(shù);

(3)為進一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明給出了男生的部分統(tǒng)計量(如表).

統(tǒng)計量

平均數(shù)(次)

中位數(shù)(次)

眾數(shù)(次)

方差

該班級男生

根據(jù)你所學過的統(tǒng)計知識,適當計算女生的有關(guān)統(tǒng)計量,進而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線軸正半軸,軸正半軸分別交于點,且為拋物線的頂點.

求拋物線的解析式及點G的坐標;

為拋物線上兩點(在點的左側(cè)) ,且到對稱軸的距離分別為個單位長度和個單位長度,點為拋物線上點之間(含點)的一個動點,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等腰直角中,,是線段上一動點(與點不重合),連結(jié),延長至點,過點于點,交于點.

(1),求的大小(用含的式子表示)

(2)用等式表示之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

同步練習冊答案