【題目】已知拋物線:,其中.
(1)以下結論正確的序號有_________;
①拋物線的對稱軸是直線; ②拋物線經(jīng)過定點,;
③函數(shù)隨著的增大而減; ④拋物線的頂點坐標為.
(2)將拋物線向右平移個單位得到拋物線.
①若拋物線與拋物線關于軸對稱,求拋物線的解析式;
②拋物線頂點的縱坐標與橫坐標之間存在一個函數(shù)關系,求這個函數(shù)關系式,并寫出的取值范圍;
③若拋物線與軸交于點,拋物線的頂點為,求間的最小距離.
【答案】(1)①②④;(2)①y=4x2+16x-5,②,③之間的最小距離是.
【解析】
(1)①將拋物線化為頂點式即可得出結果;②將變形為,令x2+4x=0,從而可得出結果;③根據(jù)k>0以及拋物線的對稱軸可得出結果;④根據(jù)頂點式可得出結果;
(2)①根據(jù)平移的性質可得拋物線L1的對稱軸為直線,再根據(jù)兩條拋物線關于y軸對稱可得出關于k的方程,解得k即可得出結果;
②根據(jù)平移的性質可得出拋物線L1的解析式為,其頂點坐標為,再根據(jù),,消去k可得出x,y之間的函數(shù)關系式,同時結合k>0,可得出x的取值范圍;
③設點的坐標為,根據(jù)兩點間的距離公式,可用含a的式子表示出AB的長,結合二次函數(shù)的性質可得出AB的最小值.
解:(1)∵,
∴拋物線的對稱軸是直線x=-2,頂點坐標為(-2,-4k-5),
故①、④正確;
將變形為,
令x2+4x=0,解得x=0或x=-4,
∴拋物線經(jīng)過定點(0,-5),(-4,-5),
故②正確;
∵k>0,拋物線的對稱軸為直線x=-2,
∴當x<-2時,y隨x的增大而減。划x>-2時,y隨x的增大而增大,
故③錯誤;
故答案為:①②④;
(2)①∵將拋物線向右平移個單位得到拋物線,拋物線的對稱軸是直線,∴拋物線的對稱軸是直線,
∵拋物線與拋物線關于軸對稱,
∴,∴,
∴平移后的拋物線的解析式為y=4x2+16x-5;
②∵,
∴拋物線:的頂點坐標為,
∴拋物線L向右平移k個單位后的拋物線的頂點坐標為,
∴,則,
∴,
∵,,
∴,∴,
∴與的函數(shù)關系式為;
③中令x=0,則y=-5,∴.
點是直線上的動點,設點的坐標為,
則,
∴當a=時,線段有最小值,最小值是.
即之間的最小距離是.
科目:初中數(shù)學 來源: 題型:
【題目】如圖等邊的邊長為,點,點同時從點出發(fā),點沿以的速度向點運動,點沿以的速度也向點運動,直到到達點時兩點都停止運動,若的面積為,點的運動時間為,則下列最能反映與之間函數(shù)關系的圖象是( )
A.B.
C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線過點,與軸交于點,連接將沿所在的直線翻折,得到連接.
(1)若求拋物線的解析式.
(2)如圖1,設的面積為的面積為,若,求的值.
(3)如圖2,若點是半徑為的上一動點,連接當點運動到某一位置時,的值最大,請求出這個最大值,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】水城門位于淀浦河和漕港河三叉口,是環(huán)城水系公園淀浦河夢蝶島區(qū)域重要的標志性景觀.在課外實踐活動中,某校九年級數(shù)學興趣小組決定測量該水城門的高.他們的操作方法如下:如圖,先在D處測得點A的仰角為20°,再往水城門的方向前進13米至C處,測得點A的仰角為31°(點D、C、B在一直線上),求該水城門AB的高.(精確到0.1米)
(參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為豐富學生的校園生活,準備從體育用品商店一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需310元,購買2個足球和5個籃球共需500元。
(1)求購買一個足球、一個籃球各需多少元?
(2)根據(jù)學校實際情況,需從體育用品商店一次性購買足球和籃球共96個,要求購買足球和籃球的總費用不超過5720元,這所中學最多可以購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組
請結合題意填空,完成本題的解答.
(Ⅰ)解不等式①,得______________________;
(Ⅱ)解不等式②,得____________________;
(Ⅲ)把不等式①和②的解集在數(shù)軸上表示出來:
(Ⅳ)原不等式組的解集為_______________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】港口、、依次在同一條直線上,甲、乙兩艘船同時分別從、兩港出發(fā),沿該直線勻速行駛向港,甲、乙兩船與港之間的距離(海里)與行駛時間(小時)之間的函數(shù)關系如圖所示,則下列說法:①甲船的平均速度為60海里/小時;②乙船的平均速度為30海里/小時;③甲、乙兩船在途中相遇兩次;④、兩港之間的距離為30海里;⑤、兩港之間的距離為90海里.其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A、B的坐標分別為(3,2)、(﹣1,0),若將線段BA繞點B順時針旋轉90°得到線段BA′,則點A′的坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A、B兩點的坐標分別為(﹣4,0),(0,4),C、F分別是直線x=6和x軸上的動點,CF=12,D是CF的中點,連接AD交y軸與點E,△ABE面積的最小值為_____cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com