【題目】水城門位于淀浦河和漕港河三叉口,是環(huán)城水系公園淀浦河夢(mèng)蝶島區(qū)域重要的標(biāo)志性景觀.在課外實(shí)踐活動(dòng)中,某校九年級(jí)數(shù)學(xué)興趣小組決定測(cè)量該水城門的高.他們的操作方法如下:如圖,先在D處測(cè)得點(diǎn)A的仰角為20°,再往水城門的方向前進(jìn)13米至C處,測(cè)得點(diǎn)A的仰角為31°(點(diǎn)DC、B在一直線上),求該水城門AB的高.(精確到0.1米)

(參考數(shù)據(jù):sin20°≈0.34,cos20°≈0.94tan20°≈0.36,sin31°≈0.52,cos31°≈0.86,tan31°≈0.60

【答案】11.7米.

【解析】

根據(jù)正切的概念表示出BD、BC,根據(jù)題意列出方程,解方程即可.

由題意,得∠ABD=90°,∠D=20°,∠ACB=31°,CD=13

RtABD中,

RtABC中,

,

CD =BD -BC,

解得米.

答:水城門AB的高約為11.7米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)A且與x軸平行的直線交拋物線yx+12BC兩點(diǎn),若線段BC的長(zhǎng)為6,則點(diǎn)A的坐標(biāo)為(  )

A.0,1B.0,4.5C.0,3D.0,6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市擬于中秋節(jié)前50天里銷售某品牌月餅,其進(jìn)價(jià)為18/kg.設(shè)第x天的銷售價(jià)格為y(元/kg)銷售量為mkg).該超市根據(jù)以往的銷售經(jīng)驗(yàn)得出以下的銷售規(guī)律:①yx滿足一次函數(shù)關(guān)系,且當(dāng)x32時(shí),y39;x40時(shí),y35.②mx的關(guān)系為m5x+50

1yx的關(guān)系式為______;

2)當(dāng)34≤x≤50時(shí),求第幾天的銷售利潤(rùn)W(元)最大?最大利潤(rùn)為多少?

3)若在當(dāng)天銷售價(jià)格的基礎(chǔ)上漲a/kg0a10),在第31天至42天銷售利潤(rùn)最大值為6250元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一張直角三角形紙片放置在平面直角坐標(biāo)系中,點(diǎn)ABx軸上,點(diǎn)Cy軸上,,且,

(Ⅰ)如圖①,求點(diǎn)C的坐標(biāo);

(Ⅱ)如圖②,沿斜邊的中線把這張紙片剪成兩個(gè)三角形,將沿直線方向平移(點(diǎn)A、、B始終在同一直線上),當(dāng)點(diǎn)與點(diǎn)重合時(shí)停止平移,

①如圖③,在平移的過程中,交于點(diǎn)E,、分別交于點(diǎn)FP,當(dāng)點(diǎn)平移到原點(diǎn)時(shí),求的長(zhǎng);

②在平移的過程中,當(dāng)重疊部分的面積最大時(shí),求此時(shí)點(diǎn)的坐標(biāo).(直接寫出結(jié)論即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD,沿對(duì)角線BD翻折△BCD,點(diǎn)E是點(diǎn)C的落點(diǎn),BEAD于點(diǎn)F,若CD4EF3,則BD的長(zhǎng)為( 。

A.5B.5C.4D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰內(nèi)接于半徑為5,已知圓心的距離為3,則這個(gè)等腰中底邊上的高可能是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,其中

1)以下結(jié)論正確的序號(hào)有_________;

①拋物線的對(duì)稱軸是直線 ②拋物線經(jīng)過定點(diǎn),

③函數(shù)隨著的增大而減。 ④拋物線的頂點(diǎn)坐標(biāo)為

2)將拋物線向右平移個(gè)單位得到拋物線

①若拋物線與拋物線關(guān)于軸對(duì)稱,求拋物線的解析式;

②拋物線頂點(diǎn)的縱坐標(biāo)與橫坐標(biāo)之間存在一個(gè)函數(shù)關(guān)系,求這個(gè)函數(shù)關(guān)系式,并寫出的取值范圍;

③若拋物線軸交于點(diǎn),拋物線的頂點(diǎn)為,求間的最小距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,內(nèi)接于,過點(diǎn)的切線

1)如圖,求證:;

2)如圖,點(diǎn)的中點(diǎn),射線于點(diǎn),交優(yōu)弧于點(diǎn),交于點(diǎn),求證:

3)如圖,在(2)的條件下,若,,,求的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】垃圾分類就是新時(shí)尚.樹立正確的垃圾分類觀念,促進(jìn)青少年養(yǎng)成良好的文明習(xí)慣,對(duì)于增強(qiáng)公共意識(shí),提升文明素質(zhì)具有重要意義.為了調(diào)査學(xué)生對(duì)垃圾分類知識(shí)的了解情況,從甲、乙兩校各隨機(jī)抽取20名學(xué)生進(jìn)行了相關(guān)知識(shí)測(cè)試,獲得了他們的成績(jī)(百分制,單位:分),并對(duì)數(shù)據(jù)(成績(jī))進(jìn)行了整理、描述和分析,下面給出了部分信息.

a.甲、乙兩校學(xué)生樣本成績(jī)頻數(shù)分布表及扇形統(tǒng)計(jì)圖如下:

甲校學(xué)生樣本成績(jī)頻數(shù)分布表(表1

成績(jī)m(分)

頻數(shù)

頻率

0.10

4

0.20

7

0.35

2

合計(jì)

20

1.0

b.甲、乙兩校學(xué)生樣本成績(jī)的平均分、中位數(shù)、眾數(shù)、方差如下表所示:(表2

平均分

學(xué)校

中位數(shù)

眾數(shù)

方差

76.7

77

89

150.2

78.1

80

135.3

其中,乙校20名學(xué)生樣本成績(jī)的數(shù)據(jù)如下:

54 72 62 91 87 69 88 79 80 62 80 84 93 67 87 87 90 71 68 91

請(qǐng)根據(jù)所給信息,解答下列問題:

1)表1___________;表2中的眾數(shù)_________;

2)乙校學(xué)生樣本成績(jī)扇形統(tǒng)計(jì)圖(圖1)中,這一組成績(jī)所在扇形的圓心角度數(shù)是_________度;

3)在此次測(cè)試中,某學(xué)生的成績(jī)是79分,在他所屬學(xué)校排在前10名,由表中數(shù)據(jù)可知該學(xué)生是________校的學(xué)生(填),理由是________________________;

4)若乙校1000名學(xué)生都參加此次測(cè)試,成績(jī)80分及以上為優(yōu)秀,請(qǐng)估計(jì)乙校成績(jī)優(yōu)秀的學(xué)生約為________人.

查看答案和解析>>

同步練習(xí)冊(cè)答案