【題目】如圖,正方形ABCD的邊長為定值,E是邊CD上的動點(不與點C,D重合),AE交對角線BD于點FFGAEBC于點G,GHBD于點H.現(xiàn)給出下列命題:AFFG;FH的長度為定值.則(  )

A.是真命題,是真命題B.是真命題,是假命題

C.是假命題,是真命題D.是假命題,是假命題

【答案】A

【解析】

先根據(jù)正方形的性質(zhì)、三角形全等判定定理與性質(zhì)得出,再根據(jù)四邊形的內(nèi)角和定理、鄰補角定義、等量代換得出,然后根據(jù)等腰三角形的性質(zhì)得出,從而得出,即可判斷①正確;先根據(jù)直角三角形的性質(zhì)得出,再結(jié)合題(1)的結(jié)論,根據(jù)三角形的判定定理與性質(zhì)可得,然后根據(jù)正方形ABCD的邊長為定值即可判斷②正確.

1)證明:連接CF

在正方形ABCD中,

ABFCBF中,

∴在四邊形ABGF中,

;

2)連接ACBDO

∵四邊形ABCD是正方形,

由(1)知,

正方形ABCD的邊長為定值

正方形ABCD的對角線AC也為定值,從而為定值

的長度為定值

綜上,①②正確

故選:A

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中(AD>AB),點EBC上一點,且DE=DA,AF⊥DE,垂足為點F,在下列結(jié)論中,不一定正確的是( 。

A. △AFD≌△DCE B. AF=AD C. AB=AF D. BE=AD﹣DF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線與直線相交于,兩點,且拋物線經(jīng)過點

1)求拋物線的解析式.

2)點是拋物線上的一個動點(不與點重合),過點作直線軸于點,交直線于點.當時,求點坐標;

3)如圖所示,設(shè)拋物線與軸交于點,在拋物線的第一象限內(nèi),是否存在一點,使得四邊形的面積最大?若存在,請求出點的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x28x+16m20m≠0)是關(guān)于x的一元二次方程

1)證明:此方程總有兩個不相等的實數(shù)根;

2)若等腰ABC的一邊長a6,另兩邊長b、c是該方程的兩個實數(shù)根,求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應(yīng)弘揚傳統(tǒng)文化的號召,某學校組織全校1200名學生進行經(jīng)典詩詞誦讀活動,并在活動之后舉辦經(jīng)典詩詞大賽,為了解本次系列活動的持續(xù)效果,學校團委在活動啟動之初,隨機抽取40名學生調(diào)查一周詩詞誦背數(shù)量,根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計圖如圖所示.

大賽結(jié)束后一個月,再次抽查這部分學生一周詩詞誦背數(shù)量,繪制成統(tǒng)計表如下:

一周詩詞誦背數(shù)量

3

4

5

6

7

8

人數(shù)

1

3

5

6

10

15

請根據(jù)調(diào)查的信息

1)求活動啟動之初學生一周詩詞誦背數(shù)量的中位數(shù);

2)估計大賽后一個月該校學生一周詩詞誦背6首(含6首)以上的人數(shù);

3)選擇適當?shù)慕y(tǒng)計量,至少從兩個不同的角度分析兩次調(diào)查的相關(guān)數(shù)據(jù),評價該校經(jīng)典詩詞誦背系列活動的效果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:△ABC內(nèi)接于⊙O,連接CO并延長交AB于點E,交⊙O于點D,滿足∠BEC3ACD

1)如圖1,求證:ABAC

2)如圖2,連接BD,點F為弧BD上一點,連接CF,弧CF=弧BD,過點AAGCD,垂足為點G,求證:CF+DGCG;

3)如圖3,在(2)的條件下,點HAC上一點,分別連接DH,OH,OHDH,過點CCPAC,交⊙O于點P,OHCP1 ,CF12,連接PF,求PF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖l,在中,,于點,是線段上的點(與,不重合),,,連結(jié),,,

1)求證:;

2)如圖2,若將繞點旋轉(zhuǎn),使邊的內(nèi)部,延長于點,交于點

①求證:;

②當為等腰直角三角形,且時,請求出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB6,BC4,動點Q在邊AB上,連接CQ,將BQC沿CQ所在的直線對折得到CQN,延長QN交直線CD于點M

1)求證:MCMQ

2)當BQ1時,求DM的長;

3)過點DDECQ,垂足為點E,直線QN與直線DE交于點F,且,求BQ的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖示AB為O的一條弦,點C為劣弧AB的中點,E為優(yōu)弧AB上一點,點F在AE的延長線上,且BE=EF,線段CE交弦AB于點D.

求證:CEBF;

若BD=2,且EA:EB:EC=3:1:,求BCD的面積(注:根據(jù)圓的對稱性可知OCAB).

查看答案和解析>>

同步練習冊答案