【題目】某公司種植和銷售一種野山菌,已知該野山菌的成本是12元/千克,規(guī)定銷售價格不低于成本,又不高于成本的兩倍.經(jīng)過市場調(diào)查發(fā)現(xiàn),某天該野山菌的銷售量y(千克)與銷售價格x(元/千克)的函數(shù)關(guān)系如圖所示:
(1)求y與x之間的函數(shù)關(guān)系式;
(2)求這一天銷售野山菌獲得的利潤W的最大值.
【答案】(1)y= ;(2)利潤W的最大值為5000元.
【解析】
(1)結(jié)合函數(shù)圖象,根據(jù)分段函數(shù)的含義,分段表示出函數(shù)關(guān)系式即可;
(2)在x的兩個不同的取值范圍內(nèi),分別計算其最大值,進(jìn)行比較取最大值即可得到答案.
(1)解:①當(dāng)12≤x≤20時,設(shè)y=kx+b代入(12,2000),(20,400),
得 ,
解得:,
∴y=-200x+4400
②當(dāng)20<x≤24時,y=400
綜上,y= ;
(2)解:①當(dāng)12≤x≤20時,
W=(x-12)y=(x-12)(-200x+4400)=-200(x-17)2+5000
當(dāng)x=17時,W的最大值為5000.
②當(dāng)20<x≤24時,W=(x-12)y=400x-4800,當(dāng)x=24時,W的最大值為4800
綜上,利潤W的最大值為5000元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2020年新冠病毒在全球蔓延,口罩成為抗擊病毒傳播的有效物資,某廠需要生產(chǎn)一批口罩,該廠有甲、乙兩種型號的生產(chǎn)機(jī)器,若用甲機(jī)器單獨(dú)完成這批訂單需要消耗原料費(fèi)76萬元,若用乙機(jī)器單獨(dú)完成需要消耗原料費(fèi)26萬元,已知每生產(chǎn)一個口罩,甲機(jī)器消耗原料費(fèi)比乙機(jī)器消耗原料費(fèi)多用0.5元.
(1)求乙機(jī)器生產(chǎn)一個口罩需要消耗多少原料費(fèi)?
(2)為了盡快完成這批訂單,該廠決定使用甲、乙機(jī)器一起完成這批訂單,消耗原料費(fèi)合計不超過39萬元,則乙機(jī)器至少生產(chǎn)多少口罩?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的圖象經(jīng)過點(diǎn),,,已知點(diǎn)的坐標(biāo)為,點(diǎn)坐標(biāo)為,點(diǎn)在軸的正半軸,且.
(1)求拋物線的函數(shù)解析式;
(2)若直線從點(diǎn)開始沿軸向下平移,分別交軸、軸于點(diǎn)、.
①當(dāng)時,在線段上否存在點(diǎn),使得點(diǎn),,構(gòu)成等腰直角三角形?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
②以動直線為對稱軸,線段關(guān)于直線的對稱線段與二次函數(shù)圖象有交點(diǎn),請直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校申報“跳繩特色運(yùn)動”學(xué)校一年后,抽樣調(diào)查了部分學(xué)生的“1分鐘跳繩”成績,并制成了下面的頻數(shù)分布直方圖(每小組含最小值,不含最大值)和扇形圖.
(1)補(bǔ)全頻數(shù)分布直方圖,扇形圖中m= ;
(2)若把每組中各個數(shù)據(jù)用這組數(shù)據(jù)的中間值代替(如A組80≤x<100的中間值是(=90次),則這次調(diào)查的樣本平均數(shù)是多少;
(3)如果“1分鐘跳繩”成績大于或等于120次為優(yōu)秀,那么該校2100名學(xué)生中“1分鐘跳繩”成績?yōu)閮?yōu)秀的大約有多少人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=m,將邊AB繞點(diǎn)B順時針旋轉(zhuǎn)90°得到線段BD,過點(diǎn)D作DE⊥CB交CB的延長線于點(diǎn)E,連接CD.
(1)求證:△ACB≌△BED;
(2)△BCD的面積為 (用含m的式子表示).
拓展:如圖②,在一般的Rt△ABC,∠ACB=90°,BC=m,將邊AB繞點(diǎn)B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,用含m的式子表示△BCD的面積,并說明理由.
應(yīng)用:如圖③,在等腰△ABC中,AB=AC,BC=8,將邊AB繞點(diǎn)B順時針旋轉(zhuǎn)90°得到線段BD,連接CD,則△BCD的面積為 ;若BC=m,則△BCD的面積為 (用含m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明騎自行車去上學(xué)途中,經(jīng)過先上坡后下坡的一段路,在這段路上所騎行的路程(米)與時間(分鐘)之間的函數(shù)關(guān)系如圖所示.下列結(jié)論:①小明上學(xué)途中下坡路的長為1800米;②小明上學(xué)途中上坡速度為150米/分,下坡速度為200米/分;③如果小明放學(xué)后按原路返回,且往返過程中,上、下坡的速度都相同,則小明返回時經(jīng)過這段路比上學(xué)時多用1分鐘;④如果小明放學(xué)后按原路返回,返回所用時間與上學(xué)所用時間相等,且返回時下坡速度是上坡速度的1.5倍,則返回時上坡速度是160米/分其中正確的有( )
A.①④B.②③C.②③④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交BC于點(diǎn)D,交CA的延長線于點(diǎn)E,過點(diǎn)D作DH⊥AC,垂足為點(diǎn)H,連接DE,交AB于點(diǎn)F.
(1)求證:DH是⊙O的切線;
(2)若⊙O的半徑為4,
①當(dāng)AE=FE時,求 的長(結(jié)果保留π);
②當(dāng) 時,求線段AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘船由A港沿北偏東65°方向航行km至B港,然后再沿北偏西40°方向航行至C港,C港在A港北偏東20°方向.
求:(1)∠C的度數(shù);
(2)A,C兩港之間的距離為多少km.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,BC=6,E是邊AD的中點(diǎn),將△ABE折疊后得到△A′BE,延長BA′交CD于點(diǎn)F,則DF的長為______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com