【題目】如圖,直線x軸交于點(diǎn)A3,0),與y軸交于點(diǎn)B,拋物線經(jīng)過點(diǎn)A,B

1)求點(diǎn)B的坐標(biāo)和拋物線的解析式;

2Mm,0)為線段OA上一個(gè)動(dòng)點(diǎn),過點(diǎn)M垂直于x軸的直線與直線AB和拋物線分別交于點(diǎn)P、N

①試用含m的代數(shù)式表示PN的長(zhǎng);

m為何值時(shí)ABN面積最大,并求ABN的最大值.

【答案】1B0,2);;(2)①;②時(shí),ABN面積最大,ABN面積最大值為.

【解析】

1)把A點(diǎn)坐標(biāo)代入直線解析式可求得c,則可求得B點(diǎn)坐標(biāo),由A、B的坐標(biāo),利用待定系數(shù)法可求得拋物線解析式;

2)①Mm0),則Pm),Nm),即可求出PN的長(zhǎng);

②先得到Sm的關(guān)系式,根據(jù)二次函數(shù)的性質(zhì)可得面積的最大值.

解:(1)直線x軸交于點(diǎn)A3,0),

,解得:c2;

B0,2),

∵拋物線經(jīng)過點(diǎn)A3,0)和點(diǎn)B0,2),

,

,

∴拋物線的解析式為:;

2)①∵MNx軸,Mm,0),

Nm),Pm,-),

②根據(jù)題意,有

時(shí),ABN面積最大,ABN面積最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A1、A2、A3在x軸上,且OA1=A1A2=A2A3,分別過點(diǎn)A1、A2、A3作y軸的平行線,與反比例函數(shù)的圖象分別交于點(diǎn)B1、B2、B3,分別過點(diǎn)B1、B2、B3作x軸的平行線,分別與y軸交于點(diǎn)C1、C2、C3,連結(jié)OB1、OB2、OB3,那么圖中陰影部分的面積之和為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C90°,以AC為直徑作O,交ABD

(1)在圖(1)中,用直尺和圓規(guī)過點(diǎn)DO的切線DEBC于點(diǎn)E;(保留作圖痕跡,不寫作法)

(2)如圖(2),如果O的半徑為3,ED4,延長(zhǎng)EOOF,連接DF,與OA交于點(diǎn)G,求OG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=﹣x+1與反比例函數(shù)y的圖象相交于點(diǎn)AB,過點(diǎn)AACx軸,垂足為點(diǎn)C(﹣2,0),連接AC、BC

1)求反比例函數(shù)的解析式;

2)求SABC;

3)利用函數(shù)圖象直接寫出關(guān)于x的不等式﹣x+1的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yx22mxm23m是常數(shù)).

1)求證:不論m為何值,該函數(shù)的圖象與x軸沒有公共點(diǎn);

2)把該函數(shù)的圖象沿y軸向下平移多少個(gè)單位長(zhǎng)度后,得到的函數(shù)的圖象與x軸只有一個(gè)公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從﹣2,﹣0,4中任取一個(gè)數(shù)記為m,再從余下的三個(gè)數(shù)中,任取一個(gè)數(shù)記為n,若kmn

1)請(qǐng)用列表或畫樹狀圖的方法表示取出數(shù)字的所有結(jié)果;

2)求正比例函數(shù)ykx的圖象經(jīng)過第一、三象限的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,點(diǎn)F是邊BC的中點(diǎn),連接AF并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)E,連接AC、BE.

(1)求證:AB=CE;

(2)若,則四邊形ABEC是什么特殊四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M1,0),直線yx+m與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(34),B點(diǎn)在y軸上.Pa,0)是x軸上的一個(gè)動(dòng)點(diǎn),過Px軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).

1)求m的值及這個(gè)二次函數(shù)的解析式;

2)若點(diǎn)P的橫坐標(biāo)為2,求△ODE的面積;

3)當(dāng)0a3時(shí),求線段DE的最大值;

4)若直線AB與拋物線的對(duì)稱軸交點(diǎn)為N,問是否存在一點(diǎn)P,使以MN、DE為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長(zhǎng)方形地面,請(qǐng)觀察下列圖形,并解答有關(guān)問題:

1)在第n個(gè)圖中,第一橫行共    塊瓷磚,第一豎列共有    塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為   (用含n的代數(shù)式表示,n表示第n個(gè)圖形)

2)上述鋪設(shè)方案,鋪一塊這樣的長(zhǎng)方形地面共用了506塊瓷磚,求此時(shí)n的值;

3)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請(qǐng)通過計(jì)算加以說明.

查看答案和解析>>

同步練習(xí)冊(cè)答案