【題目】如圖,拋物線的對(duì)稱軸是直線,與軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,點(diǎn)為拋物線上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸于點(diǎn),交直線于點(diǎn).
(1)求拋物線解析式;
(2)若點(diǎn)在第一象限內(nèi),當(dāng)時(shí),求四邊形的面積;
(3)將繞平面直角坐標(biāo)系中某點(diǎn)逆時(shí)針旋轉(zhuǎn),對(duì)應(yīng)點(diǎn)為,,,當(dāng)中有兩個(gè)頂點(diǎn)落在拋物線上時(shí),直接寫出的坐標(biāo).
【答案】(1);(2)四邊形的面積為;(3)的坐標(biāo)為或.
【解析】
(1)拋物線的對(duì)稱軸是直線,A在拋物線上,于是列方程即可得到結(jié)論.
(2)根據(jù)函數(shù)解析式得到和,求得BC的解析式為,設(shè),得到和,根據(jù)已知條件列方程得到m=5,m=0(舍去),求得、和,根據(jù)三角形的面積公式即可得到結(jié)論.
(3)分三種情況:①當(dāng)點(diǎn)O,C的對(duì)應(yīng)點(diǎn)O1,C1落在拋物線上時(shí),求出C1點(diǎn)坐標(biāo),②當(dāng)點(diǎn)C,B的對(duì)應(yīng)點(diǎn)C1,B1落在拋物線上時(shí),求出C1點(diǎn)坐標(biāo),③△BOC繞某點(diǎn)逆時(shí)針旋轉(zhuǎn)后,軸,此時(shí),不會(huì)同時(shí)在拋物線上,所以的坐標(biāo)即為①②所求.
(1)∵拋物線的對(duì)稱軸為,且過(guò)點(diǎn)
解得
(2),對(duì)稱軸,
拋物線與軸交于點(diǎn)
設(shè)
設(shè),則
.
,(舍)
,,
四邊形
當(dāng)時(shí),四邊形的面積為
(3)分三種情況:①當(dāng)點(diǎn)O,C的對(duì)應(yīng)點(diǎn)O1,C1落在拋物線上時(shí),則O1C1//x軸
∵OC=2,拋物線的對(duì)稱軸為x=1,
∴點(diǎn)C1的橫坐標(biāo)為2.
將x=2代人,得y=-2
∴點(diǎn)C1的坐標(biāo)為(2,-2);
②當(dāng)點(diǎn)C,B的對(duì)應(yīng)點(diǎn)C1,B1落在拋物線上時(shí),設(shè)C1(n,),
∵O1C1//x軸, O1C1=OC=2
∴O1(n-2, ).
∵旋轉(zhuǎn)后O1B1//y軸, O1B1=OB=4
∴B1(n-2,),將點(diǎn)B1代人拋物線得(,解得n=-2.
∴點(diǎn)C1的坐標(biāo)為(-2,0);
③△BOC繞某點(diǎn)逆時(shí)針旋轉(zhuǎn)后,軸,此時(shí),不會(huì)同時(shí)在拋物線上,
∴的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,點(diǎn)是上一點(diǎn),,于,連接.
(1)求證:;
(2)在不添加任何輔助線的情況下,請(qǐng)直接寫出圖中四對(duì)線段,使每對(duì)中較長(zhǎng)線段與較短線段長(zhǎng)度的差等于線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O的半徑為4,A、C兩點(diǎn)在⊙O上,點(diǎn)B在⊙O內(nèi),,AB⊥AC,若OB⊥OC,那么OB的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l:y=﹣m與y軸交于點(diǎn)A,直線a:y=x+m與y軸交于點(diǎn)B,拋物線y=x2+mx的頂點(diǎn)為C,且與x軸左交點(diǎn)為D(其中m>0).
(1)當(dāng)AB=12時(shí),在拋物線的對(duì)稱軸上求一點(diǎn)P使得△BOP的周長(zhǎng)最小;
(2)當(dāng)點(diǎn)C在直線l上方時(shí),求點(diǎn)C到直線l距離的最大值;
(3)若把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為“整點(diǎn)”.當(dāng)m=2020時(shí),求出在拋物線和直線a所圍成的封閉圖形的邊界上的“整點(diǎn)”的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AD=5,AB=8,點(diǎn)E為射線DC上一個(gè)動(dòng)點(diǎn),把△ADE沿直線AE折疊,當(dāng)點(diǎn)D的對(duì)應(yīng)點(diǎn)F剛好落在線段AB的垂直平分線上時(shí),則DE的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,AB=AC,AD是△ABC的中線,AN為△ABC的外角∠CAM的平分線,CE∥AD,交AN于點(diǎn)E.求證:四邊形ADCE是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線分別交x軸、y軸于點(diǎn)B,C,正方形AOCD的頂點(diǎn)D在第二象限內(nèi),E是BC中點(diǎn),OF⊥DE于點(diǎn)F,連結(jié)OE,動(dòng)點(diǎn)P在AO上從點(diǎn)A向終點(diǎn)O勻速運(yùn)動(dòng),同時(shí),動(dòng)點(diǎn)Q在直線BC上從某點(diǎn)Q1向終點(diǎn)Q2勻速運(yùn)動(dòng),它們同時(shí)到達(dá)終點(diǎn).
(1)求點(diǎn)B的坐標(biāo)和OE的長(zhǎng);
(2)設(shè)點(diǎn)Q2為(m,n),當(dāng)tan∠EOF時(shí),求點(diǎn)Q2的坐標(biāo);
(3)根據(jù)(2)的條件,當(dāng)點(diǎn)P運(yùn)動(dòng)到AO中點(diǎn)時(shí),點(diǎn)Q恰好與點(diǎn)C重合.
①延長(zhǎng)AD交直線BC于點(diǎn)Q3,當(dāng)點(diǎn)Q在線段Q2Q3上時(shí),設(shè)Q3Q=s,AP=t,求s關(guān)于t的函數(shù)表達(dá)式.
②當(dāng)PQ與△OEF的一邊平行時(shí),求所有滿足條件的AP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】地下停車場(chǎng)的設(shè)計(jì)大大緩解了住宅小區(qū)停車難的問(wèn)題,如圖是龍泉某小區(qū)的地下停車庫(kù)坡道入口的設(shè)計(jì)示意圖,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根據(jù)規(guī)定,地下停車庫(kù)坡道入口上方要張貼限高標(biāo)志,以便告知駕駛員所駕車輛能否安全駛?cè)耄傉J(rèn)為CD的長(zhǎng)就是所限制的高度,而小亮認(rèn)為應(yīng)該以CE的長(zhǎng)作為限制的高度.小剛和小亮誰(shuí)說(shuō)得對(duì)?請(qǐng)你判斷并計(jì)算出正確的限制高度.(結(jié)果精確到0.1m,參考數(shù)據(jù):sin18°≈0.31,cos18°≈0.95,tan18°≈0.325)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著移動(dòng)終端設(shè)備的升級(jí)換代,手機(jī)已經(jīng)成為我們生活中不可缺少的一部分,為了解中學(xué)生在假期使用手機(jī)的情況(選項(xiàng):(A)和同學(xué)親友聊天;(B)學(xué)習(xí):(C)購(gòu)物;(D)游戲;(E)其他),端午節(jié)后某中學(xué)在全校范圍內(nèi)隨機(jī)抽取了若干名學(xué)生進(jìn)行調(diào)查,得到如下圖表(部分信息未給出):
選項(xiàng) | 頻數(shù) | 頻率 |
A | ||
B | ||
C | ||
D | ||
E |
根據(jù)以上信息解答下列問(wèn)題:
(1)求本次參與調(diào)查的總?cè)藬?shù).
(2)___________,___________,___________,并補(bǔ)全條形統(tǒng)計(jì)圖.
(3)若該中學(xué)約有800名學(xué)生,估計(jì)全校學(xué)生中利用手機(jī)購(gòu)物或玩游戲的共有多少人?并根據(jù)以上調(diào)查結(jié)果,就中學(xué)生如何合理使用手機(jī)給出你的一條建議.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com