【題目】如圖,在矩形ABCD中,AD=5,AB=8,點E為射線DC上一個動點,把△ADE沿直線AE折疊,當點D的對應點F剛好落在線段AB的垂直平分線上時,則DE的長為_____.
科目:初中數(shù)學 來源: 題型:
【題目】給出定義,若一個四邊形中存在相鄰兩邊的平方和等于任意一條對角線的平方,則稱該四邊形為勾股四邊形.
(1)請在你學過的特殊四邊形中,寫出兩種勾股四邊形______、______;
(2)如圖,將鈍角△ABC繞點B順時針旋轉(zhuǎn)60°得到△DBE,連接AD、DC、CE,若∠DCE=90°.求證:四邊形ABCD為勾股四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2-6ax+6(a≠0)與x軸交于點A(8,0),與y軸交于點B,在X軸上有一動點E(m,0)(0<m<8),過點E作x軸的垂線交直線AB于點N,交拋物線于點P,過點P作PM⊥AB于點M.
()分別求出直線AB和拋物線的函數(shù)表達式;
()設△PMN的面積為S1,△AEN的面積為S2,若S1:S2=36:25,求m的值;
()如圖2,在()條件下,將線段OE繞點O逆時針旋轉(zhuǎn)得到OE',旋轉(zhuǎn)角為α(0°<α<90°),連接E'A、E'B.
①在x軸上找一點Q,使△OQE'∽△OE'A,并求出Q點的坐標;
②求BE'+AE'的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在菱形ABCD中,E、F分別是BC、CD的中點.
(1)求證:△ABE≌△ADF;
(2)過點C作CG∥EA交AF于H,交AD于G,若∠BAE=25°,∠BCD=130°,求∠AHC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知兩地相距,甲、乙兩人沿同一公路從 地出發(fā)到地,甲騎摩托車,乙騎自行車,如圖中分別表示甲、乙離開地的距離 與時間 的函數(shù)關系的圖象,結(jié)合圖象解答下列問題.
(1)甲比乙晚出發(fā)___小時,乙的速度是___ ;甲的速度是___.
(2)若甲到達地后,原地休息0.5小時,從地以原來的速度和路線返回地,求甲、乙兩人第二次相遇時距離地多少千米?并畫出函數(shù)關系的圖象.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家規(guī)定,中小學生每天在校體育活動時間不低于.為此,某縣就“你每天在校體育活動時間是多少”的問題,隨機調(diào)查了轄區(qū)內(nèi)300名初中學生.根據(jù)調(diào)查結(jié)果繪制成統(tǒng)計圖如圖所示,其中組為,組為,組為,組為.
請根據(jù)上述信息解答下列問題:
(1)本次調(diào)查數(shù)據(jù)的中位數(shù)落在______組內(nèi),眾數(shù)落在______組內(nèi);
(2)若該轄區(qū)約4000名初中生,請你估計其中達到國家規(guī)定體育活動時間的人數(shù);
(3)若組取,組取,組取,組取,試計算這300名學生平均每天在校體育活動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(不與B、C兩點重合),將△ABP沿直線AP翻折,點B落在點E處;在CD上取一點M,使得將△CMP沿直線MP翻折后,點C落在直線PE上的點F處,直線PE交CD于點N,連接AM、AN.
(1)若P為BC的中點,則sin∠CPM=________;
(2)求證:∠PAN的度數(shù)不變;
(3)當P在BC邊上運動時,△ADM的面積是否存在最小值,若存在,請求出PB的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com