【題目】如圖,BC是⊙O的直徑,點(diǎn)A在⊙O上,AD⊥BC,垂足為D,弧AB=弧AE,BE分別交AD,AC于點(diǎn)F,G.
(1)求證:FA=FG;
(2)若BD=DO=2,求弧EC的長度.
【答案】(1)證明見解析;(2)π.
【解析】
(1)根據(jù)BC是⊙O的直徑,AD⊥BC,弧AB=弧AE,推出∠AGB=∠CAD,即可推得FA=FG.
(2)根據(jù)BD=DO=2,AD⊥BC,求出∠AOB=60°,再根據(jù)弧AB=弧AE,求出∠EOC=60°,即可求出弧EC的長度是多少.
(1)證明:∵BC是⊙O的直徑,
∴∠BAC=90°.
∴∠ABE+∠AGB=90°.
∵AD⊥BC,
∴∠C+∠CAD=90°.
∵=,
∴∠C=∠ABE.
∴∠AGB=∠CAD.
∴FA=FG.
(2)連接AO,EO.
∵BD=DO=2,AD⊥BC,
∴AB=AO.
∵AO=BO,
∴AB=AO=BO.
∴△ABO是等邊三角形.
∴∠AOB=60°.
∵=,
∴∠AOE=60°.
∴∠EOC=60°.
∴的長為2π×(2+2)×=π.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李克強(qiáng)總理說:”一個(gè)國家養(yǎng)成全民閱讀習(xí)慣非常重要…我希望全民閱讀能夠形成一種氛圍,無處不在.“為了響應(yīng)國家的號召,某”希望“學(xué)校的全體師生掀起了閱讀的熱潮.下面是該校三個(gè)年級的學(xué)生人數(shù)分布扇形統(tǒng)計(jì)圖與學(xué)生在4月份閱讀課外書籍人次的統(tǒng)計(jì)圖表,其中七年級的學(xué)生人數(shù)為240人.請解答下列問題:
圖書種類 | 頻數(shù) | 頻率 |
科普書籍 | A | B |
文學(xué) | 1200 | C |
漫畫叢書 | D | 0.35 |
其他 | 200 | 0.05 |
(1)該校七年級學(xué)生人數(shù)所在扇形的圓心角為______°,該校的學(xué)生總?cè)藬?shù)為______人;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)為了鼓勵(lì)學(xué)生讀書,學(xué)校決定在“五四”青年節(jié)舉行兩場讀書報(bào)告會(huì).報(bào)告會(huì)的內(nèi)容從“科普書籍”“文學(xué)”“漫畫叢書”“其他”中任選兩個(gè).用畫樹狀圖或列表的方法求兩場報(bào)告會(huì)的內(nèi)容恰好是“科普書籍”與“漫畫叢書”的概率.(“科普書籍”“文學(xué)”“漫畫叢書”“其他”,可以分別用K,W,M,Q來表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A,B的坐標(biāo)分別為(4,0),(3,2).
(1)畫出△AOB關(guān)于原點(diǎn)O對稱的圖形△COD;
(2)將△AOB繞點(diǎn)O按逆時(shí)針方向旋轉(zhuǎn)90°得到△EOF,畫出△EOF;
(3)點(diǎn)D的坐標(biāo)是 ,點(diǎn)F的坐標(biāo)是 ,此圖中線段BF和DF的關(guān)系是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,本市新建一座圓形人工湖,為測量該湖的半徑,小杰和小麗沿湖邊選取A,B,C三根木柱,使得A,B之間的距離與A,C之間的距離相等,并測得BC長為120米,A到BC的距離為4米,請你幫他們求出該湖的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D在BC上,BD=DC,過點(diǎn)D作DE⊥AC,垂足為E,⊙O經(jīng)過A,B,D三點(diǎn).
(1)求證:AB是⊙O的直徑;
(2)判斷DE與⊙O的位置關(guān)系,并加以證明;
(3)若⊙O的半徑為3,∠BAC=60°,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為⊙O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是⊙O的切線;
(2)過點(diǎn)B作⊙O的切線交CD的延長線于點(diǎn)E,BC=6, .求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是線段AB的垂直平分線,則∠CAD= ∠CBD.請說明理由:
解:∵CD是線段AB的垂直平分線,
∴AC=___ ,_ =BD. .
在△ACD和△BCD中,
. =BC,
AD=_ ,
CD=CD,
∴△ACD≌__ ___ (_ . __) .
∴∠CAD=∠CBD (_ __ )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)和一次函數(shù)y=k2x+b的圖象交于點(diǎn)M(3,﹣)和點(diǎn)N(﹣1,2),則k1=_____,k2=____,一次函數(shù)的圖象交x軸于點(diǎn)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠ABC,①BD平分∠ABC;②DE=DF;③∠ABC+∠EDF=180°,以①②③中的兩個(gè)作為條件,另一個(gè)作為結(jié)論,可以使結(jié)論成立的有幾個(gè)( )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com