【題目】縣內(nèi)某小區(qū)正在緊張建設(shè)中,現(xiàn)有大量的沙石需要運(yùn)輸,“建安”車隊(duì)有載重量為8噸、10噸的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸110噸沙石.
(1)求“建安”車隊(duì)載重量為8噸、10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,“建安”車隊(duì)需要一次運(yùn)輸沙石165噸以上,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共6輛,車隊(duì)有多少種購買方案,請你一一寫出.

【答案】
(1)解:設(shè)“益安”車隊(duì)載重量為8噸、10噸的卡車分別有x輛、y輛,

根據(jù)題意得:

,

解之得:


(2)解:設(shè)載重量為8噸的卡車增加了z輛,

依題意得:8(5+z)+10(7+6﹣z)>165,

解之得:z< ,

∵z≥0且為整數(shù),

∴z=0,1,2;

∴6﹣z=6,5,4.

∴車隊(duì)共有3種購車方案:

①載重量為8噸的卡車購買1輛,10噸的卡車購買5輛;

②載重量為8噸的卡車購買2輛,10噸的卡車購買4輛;

③載重量為8噸的卡車不購買,10噸的卡車購買6輛


【解析】(1)根據(jù)“‘建安’車隊(duì)有載重量為8噸、10噸的卡車共12輛,全部車輛運(yùn)輸一次能運(yùn)輸110噸沙石”分別得出等式組成方程組,求出即可;(2)利用“‘建安’車隊(duì)需要一次運(yùn)輸沙石165噸以上”得出不等式,求出購買方案即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某景區(qū)修建一棟復(fù)古建筑,其窗戶設(shè)計如圖所示.圓O的圓心與矩形ABCD對角線的交點(diǎn)重合,且圓與矩形上下兩邊相切(E為上切點(diǎn)),與左右兩邊相交(F,G為其中兩個交點(diǎn)),圖中陰影部分為不透光區(qū)域,其余部分為透光區(qū)域.已知圓的半徑為1m,根據(jù)設(shè)計要求,若∠EOF=45°,則此窗戶的透光率(透光區(qū)域與矩形窗面的面積的比值)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為地鐵調(diào)價后的計價表.調(diào)價后小明、小偉從家到學(xué)校乘地鐵分別需要4元和3元.由于刷卡坐地鐵有優(yōu)惠因此,他們平均每次實(shí)付3.6元和2.9元.已知小明從家到學(xué)校乘地鐵的里程比小偉從家到學(xué)校的里程多5 km,且小明每千米享受的優(yōu)惠金額是小偉的2,求小明和小偉從家到學(xué)校乘地鐵的里程分別是多少千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值

1)(-1,其中x的值從不等式的正整數(shù)解中選取.

÷a+2-),其中a2+3a-1=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC=9,BAC=120°,AD是ABC的中線,AE是ABD的角平分線,DFAB交AE延長線于F,則DF的長為 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究題:

1三條直線相交,最少有__________個交點(diǎn),最多有__________個交點(diǎn)分別畫出圖形,并數(shù)出圖形中的對頂角和鄰補(bǔ)角的對數(shù);

2四條直線相交,最少有__________個交點(diǎn)最多有__________個交點(diǎn),分別畫出圖形并數(shù)出圖形中的對頂角和鄰補(bǔ)角的對數(shù);

3依次類推n條直線相交,最少有__________個交點(diǎn),最多有__________個交點(diǎn),對頂角有__________,鄰補(bǔ)角有__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形是一張放在平面直角坐標(biāo)系中的長方形紙片,為原點(diǎn),點(diǎn)軸的正半軸上,點(diǎn)軸的正半軸上,,.在邊上取一點(diǎn),將紙片沿翻折,使點(diǎn)落在邊上的點(diǎn).

(1)求的長;

(2)求直線的表達(dá)式;

(3)直線平行,當(dāng)它與矩形有公共點(diǎn)時,直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+bx+c與x軸交于A、B兩點(diǎn),其中點(diǎn)B(2,0),交y軸于點(diǎn)C(0,﹣ ).直線y=mx+ 過點(diǎn)B與y軸交于點(diǎn)N,與拋物線的另一個交點(diǎn)是D,點(diǎn)P是直線BD下方的拋物線上一動點(diǎn)(不與點(diǎn)B、D重合),過點(diǎn)P作y軸的平行線,交直線BD于點(diǎn)E,過點(diǎn)D作DM⊥y軸于點(diǎn)M.

(1)求拋物線y= x2+bx+c的表達(dá)式及點(diǎn)D的坐標(biāo);
(2)若四邊形PEMN是平行四邊形?請求出點(diǎn)P的坐標(biāo);
(3)過點(diǎn)P作PF⊥BD于點(diǎn)F,設(shè)△PEF的周長為C,點(diǎn)P的橫坐標(biāo)為a,求C與a的函數(shù)關(guān)系式,并求出C的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解放中學(xué)為了了解學(xué)生對新聞、體育、動畫、娛樂四類電視節(jié)目的喜愛程度,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查(每人限選1項(xiàng)),現(xiàn)將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖,根據(jù)圖中所給的信息解答下列問題.
(1)喜愛動畫的學(xué)生人數(shù)和所占比例分別是多少?
(2)請將條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校共有學(xué)生1000人,依據(jù)以上圖表估計該校喜歡體育的人數(shù)約為多少?

查看答案和解析>>

同步練習(xí)冊答案