【題目】如圖,是邊長(zhǎng)為9的等邊三角形,是邊上一動(dòng)點(diǎn),由向運(yùn)動(dòng)(與、不重合),是延長(zhǎng)線(xiàn)上一動(dòng)點(diǎn),與點(diǎn)同時(shí)以相同的速度由向延長(zhǎng)線(xiàn)方向運(yùn)動(dòng)(不與重合),過(guò)作于,連接交于
(1)若時(shí),求的長(zhǎng)
(2)當(dāng)點(diǎn),運(yùn)動(dòng)時(shí),線(xiàn)段與線(xiàn)段是否相等?請(qǐng)說(shuō)明理由
(3)在運(yùn)動(dòng)過(guò)程中線(xiàn)段的長(zhǎng)是否發(fā)生變化?如果不變,求出線(xiàn)段的長(zhǎng);如果發(fā)生變化,請(qǐng)說(shuō)明理由
【答案】(1)當(dāng)∠BQD=30° 時(shí),AP=3;(2)相等,見(jiàn)解析;(3)DE的長(zhǎng)不變,
【解析】
(1)先判斷出∠QPC是直角,再利用含30°的直角三角形的性質(zhì)得出QC=2PC,建立方程求解決即可;
(2)先作出PF∥BC得出∠PFA=∠FPA=∠A=60°,進(jìn)而判斷出△DBQ≌△DFP得出DQ=DP即可得出結(jié)論;
(3)利用等邊三角形的性質(zhì)得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代換即可.
(1)解:∵△ABC是邊長(zhǎng)為9的等邊三角形
∴∠ACB=60°,且∠BQD=30°
∴∠QPC=90°
設(shè)AP=,則PC=,QB=
∴QC=
∵在Rt△QCP中,∠BQD=30°
∴PC=QC 即
解得
∴ 當(dāng)∠BQD=30° 時(shí),AP=3
(2)相等,
證明:過(guò)P作PF∥QC,則△AFP是等邊三角形
∴AP=PF,∠DQB=∠DPF
∵P、Q同時(shí)出發(fā),速度相同,即BQ=AP,
∴BQ=PF,
在△DBQ和△DFP中,
∴△DBQ≌△DFP(AAS)
∴QD=PD
(3)解:不變,
由(2)知△DBQ≌△DFP
∴BD=DF
∵△AFP是等邊三角形,PE⊥AB,
∴AE=EF,
∴DE=DF+EF=BF+FA=AB=為定值,即DE的長(zhǎng)不變.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠C=90°,AD平分∠BAC,DE⊥AB于點(diǎn)E,有下列結(jié)論:①CD=ED ;②AC+ BE= AB ;③DA平分∠CDE ;④∠BDE =∠BAC;⑤=AB:AC.其中結(jié)論正確的個(gè)數(shù)有()
A.5個(gè)B.4個(gè)
C.3個(gè)D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】針對(duì)下列圖象李明同學(xué)說(shuō)到:圖①可能是;圖②可能是;圖③可能是;圖④可能是
你認(rèn)為其中必定正確的有( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角形三角板如圖1所示放置,圖2是由它抽象出的幾何圖,點(diǎn),,在同一條直線(xiàn)上,連結(jié)DC
(1)請(qǐng)判斷與的位置關(guān)系,并證明
(2)若,,求的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中央電視臺(tái)的“朗讀者”節(jié)目激發(fā)了同學(xué)們的讀書(shū)熱情,為了引導(dǎo)學(xué)生“多讀書(shū),讀好書(shū)“,某校對(duì)八年級(jí)部分學(xué)生的課外閱讀量進(jìn)行了隨機(jī)調(diào)查,整理調(diào)查結(jié)果發(fā)現(xiàn),學(xué)生課外閱讀的本書(shū)最少的有5本,最多的有8本,并根據(jù)調(diào)查結(jié)果繪制了不完整的圖表,如圖所示:
本數(shù)(本) | 頻數(shù)(人數(shù)) | 頻率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合計(jì) | 50 | c |
我們定義頻率=,比如由表中我們可以知道在這次隨機(jī)調(diào)查中抽樣人數(shù)為50人課外閱讀量為6本的同學(xué)為18人,因此這個(gè)人數(shù)對(duì)應(yīng)的頻率就是=0.36.
(1)統(tǒng)計(jì)表中的a、b、c的值;
(2)請(qǐng)將頻數(shù)分布表直方圖補(bǔ)充完整;
(3)求所有被調(diào)查學(xué)生課外閱讀的平均本數(shù);
(4)若該校八年級(jí)共有600名學(xué)生,你認(rèn)為根據(jù)以上調(diào)查結(jié)果可以估算分析該校八年級(jí)學(xué)生課外閱讀量為7本和8本的總?cè)藬?shù)為多少嗎?請(qǐng)寫(xiě)出你的計(jì)算過(guò)程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,函數(shù) y kx 與 y 的圖象交于 A、B 兩點(diǎn),過(guò) A 作 y 軸的垂線(xiàn),交函數(shù)的圖象于點(diǎn) C,連接 BC,則△ABC 的面積為( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將如圖所示的牌面數(shù)字分別是1,2,3,4的四張撲克牌背面朝上,洗勻后放在桌面上.
(1)從中隨機(jī)抽出一張牌,牌面數(shù)字是偶數(shù)的概率是 ;
(2)從中隨機(jī)抽出二張牌,兩張牌牌面數(shù)字的和是5的概率是 ;
(3)先從中隨機(jī)抽出一張牌,將牌面數(shù)字作為十位上的數(shù)字,然后將該牌放回并重新洗勻,再隨機(jī)抽取一張,將牌面數(shù)字作為個(gè)位上的數(shù)字,請(qǐng)用畫(huà)樹(shù)狀圖或列表的方法求組成的兩位數(shù)恰好是4的倍數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖①,∠QPN的頂點(diǎn)P在正方形ABCD兩條對(duì)角線(xiàn)的交點(diǎn)處,∠QPN=α,將∠QPN繞點(diǎn)P旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中∠QPN的兩邊分別與正方形ABCD的邊AD和CD交于點(diǎn)E和點(diǎn)F(點(diǎn)F與點(diǎn)C,D不重合).
(1)如圖①,當(dāng)α=90°時(shí),DE,DF,AD之間滿(mǎn)足的數(shù)量關(guān)系是 ;
(2)如圖②,將圖①中的正方形ABCD改為∠ADC=120°的菱形,其他條件不變,當(dāng)α=60°時(shí),(1)中的結(jié)論變?yōu)镈E+DF=AD,請(qǐng)給出證明;
(3)在(2)的條件下,若旋轉(zhuǎn)過(guò)程中∠QPN的邊PQ與射線(xiàn)AD交于點(diǎn)E,其他條件不變,探究在整個(gè)運(yùn)動(dòng)變化過(guò)程中,DE,DF,AD之間滿(mǎn)足的數(shù)量關(guān)系,直接寫(xiě)出結(jié)論,不用加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是直角等腰△ABC斜邊AB的中點(diǎn),M為邊AC上不和A、C重合的一動(dòng)點(diǎn),聯(lián)結(jié)DM,過(guò)D作DNDM,交BC于N,聯(lián)結(jié)MN.
(1)求證:以AM、MN、BN為邊的三角形是直角三角形
(2)如果AC2,AMx,試用x表示△DMN的面積,并求當(dāng)ADM22.5時(shí)△DMN的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com