【題目】如圖, 在東西方向的海岸線MN上有A,B兩港口,海上有一座小島P,漁民每天都乘輪船從A,B 兩港口沿AP,BP的路線去小島捕魚作業(yè).已知小島P在A港的北偏東60°方向,在B港的北偏西45°方向,小島P距海岸線MN的距離為30海里.
(1)求AP,BP的長(參考數(shù)據(jù):≈1.4,≈1.7,≈2.2);
(2)甲、乙兩船分別從A,B兩港口同時出發(fā)去小島P捕魚作業(yè),甲船比乙船晚到小島24分鐘.已知甲船速度是乙船速度的1.2倍,利用(1)中的結(jié)果求甲、乙兩船的速度各是多少海里/時?
【答案】(1)AP=60海里,BP=42(海里);(2)甲船的速度是24海里/時,乙船的速度是20海里/時
【解析】
(1)過點P作PE⊥AB于點E,則有PE=30海里,由題意,可知∠PAB=30°,∠PBA=45°,從而可得 AP=60海里,在Rt△PEB中,利用勾股定理即可求得BP的長;
(2)設乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,根據(jù)甲船比乙船晚到小島24分鐘列出分式方程,求解后進行檢驗即可得.
(1)如圖,過點P作PE⊥MN,垂足為E,
由題意,得∠PAB=90°-60°=30°,∠PBA=90°-45°=45°,
∵PE=30海里,∴AP=60海里,
∵PE⊥MN,∠PBA=45°,∴∠PBE=∠BPE= 45°,
∴PE=EB=30海里,
在Rt△PEB中,BP==30≈42海里,
故AP=60海里,BP=42(海里);
(2)設乙船的速度是x海里/時,則甲船的速度是1.2x海里/時,
根據(jù)題意,得,
解得x=20,
經(jīng)檢驗,x=20是原方程的解,
甲船的速度為1.2x=1.2×20=24(海里/時).,
答:甲船的速度是24海里/時,乙船的速度是20海里/時.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,展開后折痕DE分別交AB、AC于點E、G,連結(jié)GF,給出下列結(jié)論:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,則正方形ABCD的面積是6+4 ,其中正確的結(jié)論個數(shù)為( 。
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表為某個雨季水庫管理員記錄的水庫一周內(nèi)的水位變化情況,警戒水位為150m(上周末的水位剛好達到警戒水位).
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 七 |
增減/m | +1.2 | +0.4 | +0.8 | ﹣0.1 | +0.7 | ﹣0.7 | ﹣1.1 |
注:正數(shù)表示比前一天水位上升,負數(shù)表示比前一天水位下降.
(1)本周哪一天水位最高?有多少米?
(2)本周哪一天水位最低?有多少米?
(3)根據(jù)給出的數(shù)據(jù),以警戒水位為0點,用折線統(tǒng)計圖表示本周內(nèi)該水庫的水位情況.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了做好大課間活動,計劃用400元購買10件體育用品,備選體育用品及單價如下表(單位:元)
備選體育用品 | 籃球 | 排球 | 羽毛球拍 |
單價(元) | 50 | 40 | 25 |
(1)若400元全部用來購買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購買多少件?
(2)若400元全部用來購買籃球、排球和羽毛球拍三種共10件,能實現(xiàn)嗎?(若能實現(xiàn)直接寫出一種答案即可,若不能請說明理由.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】操作探究:已知在紙面上有一數(shù)軸(如圖所示).
操作一:
(1)折疊紙面,使1表示的點與-1表示的點重合,則-3表示的點與________表示的點重合;
操作二:
(2)折疊紙面,使-1表示的點與3表示的點重合,回答以下問題:
①5表示的點與數(shù)________表示的點重合;
②若數(shù)軸上A、B兩點之間距離為11(A在B的左側(cè)),且A、B兩點經(jīng)折疊后重合,求A、B兩點表示的數(shù)是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,∠BAC=90°,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD ≌△ACE ;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,F(xiàn)C之間的數(shù)量關系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣2ax+c(a<0)的最大值為4,且拋物線過點( ,﹣ ),點P(t,0)是x軸上的動點,拋物線與y軸交點為C,頂點為D.
(1)求該二次函數(shù)的解析式,及頂點D的坐標;
(2)求|PC﹣PD|的最大值及對應的點P的坐標;
(3)設Q(0,2t)是y軸上的動點,若線段PQ與函數(shù)y=a|x|2﹣2a|x|+c的圖象只有一個公共點,求t的取值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校計劃購買一批課外讀物,為了了解學生對課外讀物的需求情況,學校進行了一次“我最喜愛的課外讀物”的調(diào)查,設置了“文學”、“科普”、“藝術”和“其他”四個類別,規(guī)定每人必須并且只能選擇其中一類,現(xiàn)從全體學生的調(diào)查表中隨機抽取了部分學生的調(diào)查表進行統(tǒng)計,并把統(tǒng)計結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計圖,則在扇形統(tǒng)計圖中,藝術類讀物所在扇形的圓心角是度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com