【題目】某景區(qū)有一個景觀奇異的天門洞,D點(diǎn)是洞的入口,游人從入口進(jìn)洞游覽后,可經(jīng)山洞到達(dá)山頂?shù)某隹跊鐾?/span>A處觀看旅游區(qū)風(fēng)景,最后坐纜車沿索道AB返回山腳下的B處,在同一平面內(nèi),若測得斜坡BD的長為100米,坡角∠DBC =10°,在B處測得A的仰角∠ABC=40°,在D處測得A的仰角∠ADF=85°,過D點(diǎn)作地面BE的垂線,垂足為C.
(1)求∠ADB的度數(shù):
(2)過D點(diǎn)作AB的垂線,垂足為G,求DG的長及索道AB的長.(結(jié)果保留根號)
【答案】(1)105°;(2)米
【解析】
試題(1)由DC⊥CE可得∠BCD=90°,由∠DBC=10°可得∠BDC=80°,再根據(jù)周角的定義求解;
(2)過點(diǎn)D作DG⊥AB于點(diǎn)G,先根據(jù)含30°的直角三角形的性質(zhì)求得GD的長,再根據(jù)30°角的余弦函數(shù)求得GB的長,再根據(jù)等腰直角三角形的性質(zhì)求解即可.
(1)∵DC⊥CE
∴∠BCD=90°
又∵∠DBC=10°
∴∠BDC=80°
∵∠ADF=85°
∴∠ADB=360°-80°-90°-85°=105°;
(2)過點(diǎn)D作DG⊥AB于點(diǎn)G
在Rt△GDB中,
∠GBD=40°-10°=30°,
∴∠BDG=90°-30°=60°.
又∵BD=100,
∴GD=BD=100×=50.
∴GB=BD×cos30°=100×
在Rt△ADG=105°-60°=45°
∴GD=GA=50
∴AB=AG+GB=
答:索道長米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里裝有黑、白兩種顏色的球共40只,這些球除顏色外其余完全相同.小穎做摸球?qū)嶒?/span>,攪勻后,她從盒子里隨機(jī)摸出一只球記下顏色后,再把球放回盒子中,不斷重復(fù)上述過程,下表是實(shí)驗中的一組統(tǒng)計數(shù)據(jù):
(1)請估計:當(dāng)n很大時,摸到白球的頻率將會接近______;(精確到0.1)
(2)若從盒子里隨機(jī)摸出一只球,則摸到白球的概率的估計值為______;
(3)試估算盒子里黑、白兩種顏色的球各有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在我校剛剛結(jié)束的繽紛體育節(jié)上,初三年級參加了60m迎面接力比賽.假設(shè)每名同學(xué)在跑步過程中是勻速的,且交接棒的時間忽略不計,如圖是A、B兩班的路程差y(米)與比賽開始至A班先結(jié)束第二棒的時間x(秒)之間的函數(shù)圖象.則B班第二棒的速度為_____米/秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1=(x>0)的圖象上,頂點(diǎn)B在函數(shù)y2=(x>0)的圖象上,∠ABO=30°,則= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將沿弦BC折疊,交直徑AB于點(diǎn)D,若AD=4,DB=5,則BC的長是( )
A. 3 B. 8 C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線:與:交于點(diǎn),分別與軸、軸交于點(diǎn)、.
(1)分別求出點(diǎn)、、的坐標(biāo);
(2)若是線段上的點(diǎn),且的面積為12,求直線的函數(shù)表達(dá)式;
(3)在(2)的條件下,設(shè)是射線上的點(diǎn).
①如圖2,過點(diǎn)作,且使四邊形為菱形,請直接寫出點(diǎn)的坐標(biāo);
②在平面內(nèi)是否存在其它點(diǎn),使以、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD,F(xiàn)是對角線AC上的一點(diǎn),過點(diǎn)D作DE∥AC,且DE=CF,連接AE、DE、EF.
(1)求證:△ADE≌△BCF;
(2)若∠BAF+∠AED=180°,求證:四邊形ABFE為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,矩形ABCD中,AB=8,AD=6,點(diǎn)E、F分別在邊CD、AB上.
(1)若DE=BF,求證:四邊形AFCE是平行四邊形;
(2)若四邊形AFCE是菱形,求菱形AFCE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)坐標(biāo)分別為A(1,3),B(4,2),C(2,1).
(1)作出與△ABC關(guān)于x軸對稱的△A1B1C1.
(2)以原點(diǎn)O為位似中心,在原點(diǎn)的另一個側(cè)畫出△A2B2C2.使=,并寫出A2、B2、C2的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com