【題目】如圖1,在平面直角坐標(biāo)系中,直線:與:交于點(diǎn),分別與軸、軸交于點(diǎn)、.
(1)分別求出點(diǎn)、、的坐標(biāo);
(2)若是線段上的點(diǎn),且的面積為12,求直線的函數(shù)表達(dá)式;
(3)在(2)的條件下,設(shè)是射線上的點(diǎn).
①如圖2,過點(diǎn)作,且使四邊形為菱形,請(qǐng)直接寫出點(diǎn)的坐標(biāo);
②在平面內(nèi)是否存在其它點(diǎn),使以、、、為頂點(diǎn)的四邊形是菱形?若存在,直接寫出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
【答案】(1)A(6,3).B(12,0).C(0,6),(2)y=x+6.(3)①Q(3,-3),②(3,3),(6,6).
【解析】
(1)構(gòu)建方程組確定交點(diǎn)A的坐標(biāo),利用待定系數(shù)法確定B,C兩點(diǎn)坐標(biāo)即可.
(2)設(shè)D(m,m),利用三角形的面積公式,構(gòu)建方程求出m的值,再利用待定系數(shù)法即可解決問題.
(3)①構(gòu)建OC=PC,設(shè)P(m,m),利用兩點(diǎn)間距離公式,構(gòu)建方程求出m即可.
②當(dāng)OC為菱形的對(duì)角線時(shí),OC垂直平分線段PQ,利用對(duì)稱性解決問題即可;當(dāng)PC為對(duì)角線時(shí),OQ⊥CP, 利用對(duì)稱性解決問題即可.
解:(1)由
解得
∴A(6,3).
∵與分別與x軸、y軸交于點(diǎn)B、C,
∴C(0,6),B(12,0).
(2)設(shè)D(m,m),由題意:OC=6,△COD的面積為12,
∴×6×m=12,
∴m=4,
∴D(4,2),∵C(0,6),
設(shè)直線CD的解析式為y=kx+b,
則有
解得
∴直線CD的解析式為y=x+6.
(3)①∵四邊形OCPQ是菱形,
∴OC=PC=6,
設(shè)P(m,m+6),
∴m2+m2=36,
∴m=3或3,
∴P(3,-3+6),
∵PQ∥OC,PQ=OC,
②如圖,當(dāng)OC為菱形的對(duì)角線時(shí),OC垂直平分線段PQ,
易知P′(3,3),Q′(3,3),
∴滿足條件的點(diǎn)Q′的坐標(biāo)為(3,3).
(3,3)
如下圖,當(dāng)PC為對(duì)角線時(shí),OQ⊥CP,
易知△OCP是等腰直角三角形,
∴四邊形OCQP是正方形,此時(shí)Q的坐標(biāo)為(6,6).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A(﹣2,﹣2)、B(n,4)是一次函數(shù)y=kx+b的圖象和反比例函數(shù)y=的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)三位正整數(shù)N,各個(gè)數(shù)位上的數(shù)字互不相同且都不為0,若從它的百位、十位、個(gè)位上的數(shù)字任意選擇兩個(gè)數(shù)字組成兩位數(shù),所有這些兩位數(shù)的和等于這個(gè)三位數(shù)本身,則稱這樣的三位數(shù)N為“公主數(shù)”.例如:132,選擇百位數(shù)字1和十位數(shù)字3所組成的兩位數(shù)為:13和31,選擇百位數(shù)字1和個(gè)位數(shù)字2組成的兩位數(shù)為:12和21,選擇十位數(shù)字3和個(gè)位數(shù)字2所組成的兩位數(shù)為:32和23,因?yàn)?/span>13+31+12+21+32+23=132,所以132是“公主數(shù)”.一個(gè)三位正整數(shù),若它的十位數(shù)字等于百位數(shù)字與個(gè)位數(shù)字的和,則稱這樣的三位數(shù)為“伯伯?dāng)?shù)”.
(1)判斷123是不是“公主數(shù)”?請(qǐng)說明理由.
(2)證明:當(dāng)一個(gè)“伯伯?dāng)?shù)”是“公主數(shù)”時(shí),則z=2x.
(3)若一個(gè)“伯伯?dāng)?shù)”與132的和能被13整除,求滿足條件的所有“伯伯?dāng)?shù)”.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)E、F分別是四邊形ABCD邊AB、AD上的點(diǎn),且DE與CF相交于點(diǎn)G.
(1)如圖①,若AB∥CD,AB=CD,∠A=90°,且ADDF=AEDC,求證:DE⊥CF:
(2)如圖②,若AB∥CD,AB=CD,且∠A=∠EGC時(shí),求證:DECD=CFDA:
(3)如圖③,若BA=BC=3,DA=DC=4,設(shè)DE⊥CF,當(dāng)∠BAD=90°時(shí),試判斷是否為定值,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某景區(qū)有一個(gè)景觀奇異的天門洞,D點(diǎn)是洞的入口,游人從入口進(jìn)洞游覽后,可經(jīng)山洞到達(dá)山頂?shù)某隹跊鐾?/span>A處觀看旅游區(qū)風(fēng)景,最后坐纜車沿索道AB返回山腳下的B處,在同一平面內(nèi),若測(cè)得斜坡BD的長(zhǎng)為100米,坡角∠DBC =10°,在B處測(cè)得A的仰角∠ABC=40°,在D處測(cè)得A的仰角∠ADF=85°,過D點(diǎn)作地面BE的垂線,垂足為C.
(1)求∠ADB的度數(shù):
(2)過D點(diǎn)作AB的垂線,垂足為G,求DG的長(zhǎng)及索道AB的長(zhǎng).(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)慶節(jié)假日期間,昀昀一家去公園游玩,在一個(gè)場(chǎng)所有一個(gè)“守株待兔”的游戲,游戲設(shè)計(jì)者提供了一只兔子和一個(gè)有A、B、C、D四個(gè)出入口的兔籠,而且籠內(nèi)的兔子從每個(gè)出入口走出兔籠的機(jī)會(huì)是均等的.游戲規(guī)定:①玩家只能將小兔從A、B兩個(gè)出入口放入;②如果小兔進(jìn)入籠子后選擇從開始進(jìn)入的出入口離開,則可獲得一只價(jià)值4元的小兔玩具,否則應(yīng)付費(fèi)3元.
(1)畫樹狀圖或列表格,寫出該游戲的所有可能結(jié)果;
(2)昀昀玩該游戲得到小兔玩具的機(jī)會(huì)有多大?
(3)假設(shè)有120人次玩此游戲,估計(jì)游戲設(shè)計(jì)者可賺多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AC平分∠DAB,AC2=ABAD,∠ADC=90°,E為AB的中點(diǎn).
(1)求證:△ADC∽△ACB;
(2)CE與AD有怎樣的位置關(guān)系?試說明理由;
(3)若AD=4,AB=6,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市為了了解高峰時(shí)段16路公交車從總站乘該路車出行的人數(shù)情況,隨機(jī)抽查了10個(gè)班次乘該路車的人數(shù),結(jié)果如下:
14,23,16,25,23,28,26,27,23,25.
(1)這組數(shù)據(jù)的眾數(shù)為________,中位數(shù)為________;
(2)計(jì)算這10個(gè)班次乘該路車人數(shù)的平均數(shù);
(3)如果16路公交車在高峰時(shí)段從總站共出車60個(gè)班次,根據(jù)上面的計(jì)算結(jié)果,估計(jì)在高峰時(shí)段從總站乘該路車出行的乘客共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.阜陽(yáng)市某家快遞公司,2017年3月份與5月份完成投遞的快遞總件數(shù)分別為10萬(wàn)件和12.1萬(wàn)件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長(zhǎng)率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長(zhǎng)率?
(2) 如果平均每人每月最多可投遞快遞0.6萬(wàn)件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成2017年6月份的快遞投遞任務(wù)?如果不能,請(qǐng)問至少需要增加幾名業(yè)務(wù)員?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com