【題目】如圖,在Rt△ABO中,斜邊AB=1.若OC∥BA,∠AOC=36°,則( )
A.點(diǎn)B到AO的距離為sin54°
B.點(diǎn)B到AO的距離為tan36°
C.點(diǎn)A到OC的距離為sin36°sin54°
D.點(diǎn)A到OC的距離為cos36°sin54°
【答案】C
【解析】
試題分析:根據(jù)圖形得出B到AO的距離是指BO的長,過A作AD⊥OC于D,則AD的長是點(diǎn)A到OC的距離,根據(jù)銳角三角形函數(shù)定義得出BO=ABsin36°,即可判斷A、B;過A作AD⊥OC于D,則AD的長是點(diǎn)A到OC的距離,根據(jù)銳角三角形函數(shù)定義得出AD=AOsin36°,AO=ABsin54°,求出AD,即可判斷C、D.
解:
B到AO的距離是指BO的長,
∵AB∥OC,
∴∠BAO=∠AOC=36°,
∵在Rt△BOA中,∠BOA=90°,AB=1,
∴sin36°=,
∴BO=ABsin36°=sin36°,
故A、B選項(xiàng)錯(cuò)誤;
過A作AD⊥OC于D,則AD的長是點(diǎn)A到OC的距離,
∵∠BAO=36°,∠AOB=90°,
∴∠ABO=54°,
∵sin36°=,
∴AD=AOsin36°,
∵sin54°=,
∴AO=ABsin54°,
∵AB=1,
∴AD=ABsin54°sin36°=1×sin54°sin36°=sin54°sin36°,故C選項(xiàng)正確,D選項(xiàng)錯(cuò)誤;
故選:C.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,將△ABD沿AD折疊得到△AED,點(diǎn)E落在CD上,∠B=50°,∠C=30°.
(1)填空:∠BAD= 度;
(2)求∠CAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一面與地面垂直的圍墻的同側(cè)有一根高10米的旗桿AB和一根高度未知的電線桿CD,它們都與地面垂直,為了測得電線桿的高度,一個(gè)小組的同學(xué)進(jìn)行了如下測量:某一時(shí)刻,在太陽光照射下,旗桿落在圍墻上的影子EF的長度為2米,落在地面上的影子BF的長為10米,而電線桿落在圍墻上的影子GH的長度為3米,落在地面上的影子DH的長為5米,依據(jù)這些數(shù)據(jù),該小組的同學(xué)計(jì)算出了電線桿的高度.
(1)該小組的同學(xué)在這里利用的是 投影的有關(guān)知識進(jìn)行計(jì)算的;
(2)試計(jì)算出電線桿的高度,并寫出計(jì)算的過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABO中,斜邊AB=1.若OC∥BA,∠AOC=36°,則( )
A.點(diǎn)B到AO的距離為sin54°
B.點(diǎn)B到AO的距離為tan36°
C.點(diǎn)A到OC的距離為sin36°sin54°
D.點(diǎn)A到OC的距離為cos36°sin54°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動點(diǎn)P從點(diǎn)A出發(fā)沿AD方向向點(diǎn)D以1cm/s的速度運(yùn)動,動點(diǎn)Q從點(diǎn)C開始沿著CB方向向點(diǎn)B以3cm/s的速度運(yùn)動.點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)C同時(shí)出發(fā),當(dāng)其中一點(diǎn)到達(dá)端點(diǎn)時(shí),另一點(diǎn)隨之停止運(yùn)動.
(1)經(jīng)過多長時(shí)間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長時(shí)間,四邊形PQBA是矩形?
(3)經(jīng)過多長時(shí)間,當(dāng)PQ不平行于CD時(shí),有PQ=CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD,頂點(diǎn)A(1,3)、B(1,1)、C(3,1),規(guī)定“把正方形ABCD先沿x軸翻折,再向左平移1個(gè)單位”為一次交換,如此這樣,連續(xù)經(jīng)過2 020次變換后,正方形ABCD的對角線交點(diǎn)M的坐標(biāo)變?yōu)?/span>_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=8cm,BC=12cm,點(diǎn)E為AB中點(diǎn),如果點(diǎn)P在線段BC上以每秒4cm的速度,由點(diǎn)B向點(diǎn)C運(yùn)動,同時(shí),點(diǎn)Q在線段CD上以v厘米/秒的速度,由點(diǎn)C向點(diǎn)D運(yùn)動,設(shè)運(yùn)動時(shí)間為t秒.
(1)直接寫出:PC= 厘米,CQ= 厘米;(用含t、v的代數(shù)式表示)
(2)若以E、B、P為頂點(diǎn)的三角形和以P、C、Q為頂點(diǎn)的三角形全等,試求v、t的值;
(3)若點(diǎn)Q以(2)中的運(yùn)動速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針方向沿長方形ABCD的四邊運(yùn)動,求經(jīng)過多長時(shí)間點(diǎn)P與點(diǎn)Q第一次在長方形ABCD的哪條邊上相遇?
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D、E分別是AB、AC的中點(diǎn),過點(diǎn)E作EF∥AB,交BC于點(diǎn)F.
(1)求證:四邊形DBFE是平行四邊形;
(2)當(dāng)△ABC滿足什么條件時(shí),四邊形DBEF是菱形?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A1,A2,…,An均在直線y=x﹣2上,點(diǎn)B1,B2,…,Bn均在雙曲線y=﹣上,并且滿足:A1B1⊥x軸,B1A2⊥y軸,A2B2⊥x軸,B2A3⊥y軸,…,AnBn⊥x軸,BnAn+1⊥y軸,…,記點(diǎn)An的橫坐標(biāo)為an(n為正整數(shù)).若a1=﹣2,則a2016=_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com