【題目】如圖所示,在梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B以3cm/s的速度運動.點P、Q分別從點A和點C同時出發(fā),當其中一點到達端點時,另一點隨之停止運動.
(1)經過多長時間,四邊形PQCD是平行四邊形?
(2)經過多長時間,四邊形PQBA是矩形?
(3)經過多長時間,當PQ不平行于CD時,有PQ=CD.
【答案】(1)6秒;(2)6.5秒;(3)7秒.
【解析】分析:(1)設經過ts時,四邊形PQCD是平行四邊形,根據(jù)DP=CQ,代入后求出即可;
(2)設經過ts時,四邊形PQBA是矩形,根據(jù)AP=BQ,代入后求出即可;
(3)設經過t(s),四邊形PQCD是等腰梯形,利用EP=2列出有關t的方程求解即可.
詳解:(1)設經過x秒,四邊形PQCD為平行四邊形
即PD=CQ
所以24﹣x=3x,
解得:x=6.
(2)設經過y秒,四邊形PQBA為矩形,
即AP=BQ,
所以y=26﹣3y,
解得:y=.
(3)設經過t秒,四邊形PQCD是等腰梯形.
過P點作PE⊥AD,過D點作DF⊥BC,
∴∠QEP=∠DFC=90°
∵四邊形PQCD是等腰梯形,
∴PQ=DC.
又∵AD∥BC,∠B=90°,
∴AB=PE=DF.
在Rt△EQP和Rt△FCD中,
PQ=DC
PE=DF
∴Rt△EQP≌Rt△FCD(HL).
∴EQ=FC
∵FC=BC﹣AD=26﹣24=2.
又∵BQ=BC-CQ=26﹣3t,
∴EQ=AP﹣BQ=t﹣(26﹣3t)=4t-26.
∴4t-26=2
得:t=7.
∴經過7s,PQ=CD.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E在邊BC上且CE=1,長為的線段MN在AC上運動,當四邊形BMNE的周長最小時,則tan∠MBC的值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD中,BF平分∠ABC交AD于點F,AE⊥BF于點O,交BC于點E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)連接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀以下內容,并解決所提出的問題:
我們知道:;;所以.
用與相同的方法可計算得;.
歸納以上的學習過程,可猜測結論:________.
利用以上的結論計算以下各題:①________;②=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線l1:y=(x﹣2)2﹣2與x軸分別交于O、A兩點,將拋物線l1向上平移得到l2 , 過點A作AB⊥x軸交拋物線l2于點B,如果由拋物線l1、l2、直線AB及y軸所圍成的陰影部分的面積為16,則拋物線l2的函數(shù)表達式為( 。
A.y=(x﹣2)2+4
B.y=(x﹣2)2+3
C.y=(x﹣2)2+2
D.y=(x﹣2)2+1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸的交點的橫坐標分別為﹣1,3,則下列結論正確的個數(shù)有( )
①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意x均有ax2+bx≥a+b.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知矩形OABC與矩形ODEF是位似圖形,P是位似中心,若點B的坐標為(2,4),點E的坐標為(﹣1,2),則點P的坐標為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=8,AD=5,點E為DC邊上一個動點,把△ADE沿AE折疊,點D的對應點D’落在矩形ABCD的對稱軸上時,DE的長為____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在數(shù)學活動課中,小敏為了測量校園內旗桿AB的高度,站在教學樓上的C處測得旗桿低端B的俯角為45°,測得旗桿頂端A的仰角為30°,如旗桿與教學樓的水平距離CD為9m,則旗桿的高度是多少?(結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com