【題目】如圖,1號(hào)樓在2號(hào)樓的南側(cè),樓間距為AB.冬至日正午,太陽(yáng)光線(xiàn)與水平面所成的角為32.3°,1號(hào)樓在2號(hào)樓墻面上的影高為CA;春分日正午,太陽(yáng)光線(xiàn)與水平面所成的角為55.7°,1號(hào)樓在2號(hào)樓墻面上的影高為DA.已知CD=35m.請(qǐng)求出兩樓之間的距離AB的長(zhǎng)度(結(jié)果保留整數(shù))
(參考數(shù)據(jù):sin32.3°≈0.53,cos32.3°≈0.85,tan32.3°≈0.63,sin55.7°≈0.83,cos55.7°≈0.56,tan55.7°≈1.47)
【答案】42m.
【解析】
構(gòu)造出兩個(gè)直角三角形,利用兩個(gè)角的正切值即可求出答案.
解:過(guò)點(diǎn)C作CE⊥PB,垂足為E,過(guò)點(diǎn)D作DF⊥PB,垂足為F,
則∠CEP=∠PFD=90°,
由題意可知:設(shè)AB=x,
在Rt△PCE中,tan32.3°=,
∴PE=xtan32.3°,
同理可得:在Rt△PDF中,tan55.7°=,
∴PF=xtan55.7°,
由PF-PE=EF=CD=35,
可得xtan55.7°-xtan32.3°=35,
解得:x=42.
∴樓間距AB的長(zhǎng)度約為42m.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,拋物線(xiàn)y=x2+(m﹣2)x﹣2m(m>0)與x軸交于A、B兩點(diǎn)(A在B左邊),與y軸交于點(diǎn)C.連接AC、BC,D為拋物線(xiàn)上一動(dòng)點(diǎn)(D在B、C兩點(diǎn)之間),OD交BC于E點(diǎn).
(1)若△ABC的面積為8,求m的值;
(2)在(1)的條件下,求的最大值;
(3)如圖2,直線(xiàn)y=kx+b與拋物線(xiàn)交于M、N兩點(diǎn)(M不與A重合,M在N左邊),連MA,作NH⊥x軸于H,過(guò)點(diǎn)H作HP∥MA交y軸于點(diǎn)P,PH交MN于點(diǎn)Q,求點(diǎn)Q的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AC為弦,OD∥BC,交AC于D,BC=4cm.
(1)求證:AC⊥OD;
(2)求OD的長(zhǎng);
(3)若2sinA﹣1=0,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形紙片ABCD中,AB=6,BC=10,點(diǎn)E在CD上,將△BCE沿BE折疊,點(diǎn)C恰落在邊AD上的點(diǎn)F處;點(diǎn)G在AF上,將△ABG沿BG折疊,點(diǎn)A恰落在線(xiàn)段BF上的點(diǎn)H處,①∠EBG=45°;②△DEF∽△ABG;③S△ABG=S△FGH;④AG+DF=FG.則下列結(jié)論正確的有( )
A. ①②④ B. ①③④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ABC=90°.
(1)尺規(guī)作圖:按下列要求完成作圖(保留作圖痕跡,請(qǐng)標(biāo)明字母)
①作線(xiàn)段AC的垂直平分線(xiàn)l,交AC于點(diǎn)O;
②連接BO并延長(zhǎng),在BO的延長(zhǎng)線(xiàn)上截取OD,使得OD=OB;
③連接DA、DC.
(2)試判斷AD、CD的位置關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:Rt△EFP和矩形ABCD如圖①擺放(點(diǎn)C與點(diǎn)E重合),點(diǎn)B,C(E),F在同一直線(xiàn)上,AB=3cm,BC=9cm,EF=8cm,PE=PF=5cm,如圖②,△EFP從圖①的位置出發(fā),沿CB方向勻速運(yùn)動(dòng),速度為2cm/s,當(dāng)點(diǎn)F與點(diǎn)C重合時(shí)△EFP停止運(yùn)動(dòng)停止.設(shè)運(yùn)動(dòng)時(shí)間為t(s)(0<t<4),解答下列問(wèn)題:
(1)當(dāng)0<t<2時(shí),EP與CD交于點(diǎn)M,請(qǐng)用含t的代數(shù)式表示CE=______,CM=______;
(2)當(dāng)2<t<4時(shí),如圖③,PF與CD交于點(diǎn)N,設(shè)四邊形EPNC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)當(dāng)2<t<4時(shí),且S四邊形EPNC:S矩形ABCD=1:4時(shí),請(qǐng)求出t的值;
(4)連接BD,在運(yùn)動(dòng)過(guò)程中,當(dāng)BD與EP相交時(shí),設(shè)交點(diǎn)為O,當(dāng)t=______時(shí);O在∠BAD的平分線(xiàn)上.(不需要寫(xiě)解答過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠A=60°,BM⊥AC于點(diǎn)M,CN⊥AB于點(diǎn)N,BM,CN交于點(diǎn)O,連接MN.下列結(jié)論:①∠AMN=∠ABC;②圖中共有8對(duì)相似三角形;③BC=2MN.其中正確的個(gè)數(shù)是( 。
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線(xiàn)y=x2-mx+m2-2(m為大于0的常數(shù))與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))
(1)若點(diǎn)A的坐標(biāo)為(1,0)
①求拋物線(xiàn)的表達(dá)式;
②當(dāng)n≤x≤2時(shí),函數(shù)值y的取值范圍是-≤y≤5-n,求n的值;
(2)將拋物線(xiàn)在x軸下方的部分沿x軸翻折,得到新的函數(shù)的圖象,如圖,當(dāng)2<x<3時(shí),若此函數(shù)的值隨x的增大而減小,直接寫(xiě)出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市銷(xiāo)售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷(xiāo)售量y(千克)與每千克售價(jià)x(元)滿(mǎn)足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式(利潤(rùn)=收入-成本);
(3)試說(shuō)明(2)中總利潤(rùn)W隨售價(jià)x的變化而變化的情況,并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com