【題目】問題提出:
(1)如圖①,已知線段AB和BC,AB=2,BC=5,則線段AC的最小值為 ;
問題探究
(2)如圖②,已知扇形COD中,∠COD=90°,DO=CO=6,點(diǎn)A是OC的中點(diǎn),延長OC到點(diǎn)F,使CF=OC,點(diǎn)P是 上的動(dòng)點(diǎn),點(diǎn)B是OD上的一點(diǎn),BD=1.
(i)求證:△OAP~△OPF;
(ii)求BP+2AP的最小值;
問題解決:
(3)如圖③,有一個(gè)形狀為四邊形ABCD的人工湖,BC=9千米,CD=4千米,∠BCD=150°,現(xiàn)計(jì)劃在湖中選取一處建造一座假山P,且BP=3千米,為方便游客觀光,從C、D分別建小橋PD,PC.已知建橋PD每千米的造價(jià)是3萬元,建橋PC每千米的造價(jià)是1萬元,建橋PD和PC的總造價(jià)是否存在最小值?若存在,請(qǐng)確定點(diǎn)P的位置并求出總造價(jià)的最小值,若不存在,請(qǐng)說明理由.(橋的寬度忽略不計(jì))
【答案】(1)3;(2)(i)詳見解析;(ii)13;(3)建橋PD和PC的總造價(jià)最小值為12萬元
【解析】
問題提出:
(1)當(dāng)點(diǎn)A在線段BC上時(shí),線段AC有最小值,可求解;
問題探究
(2)(i)由題意可得,由相似三角形的判定可得△OAP~△OPF;
(ii)由相似三角形的性質(zhì)可得PF=2AP,可得BP+2AP=BP+PF,即當(dāng)點(diǎn)F,點(diǎn)P,點(diǎn)B三點(diǎn)共線時(shí),BP+2AP有最小值,最小值為BF,由勾股定理可求BP+2AP有最小值;
問題解決:
(3)以點(diǎn)B為圓心,3為半徑作圓交AB于點(diǎn)E,交BC于點(diǎn)F,點(diǎn)P為上一點(diǎn),連接BP,PC,PD,在BC上截取BM=1,連接MD,過點(diǎn)D作DG⊥CB,可證△BPM∽△BCP,可得PC=3PM,當(dāng)點(diǎn)P在線段MD上時(shí),建橋PD和PC的總造價(jià)有最小值,由勾股定理可求DM的值,即可求建橋PD和PC的總造價(jià)是否存在最小值.
解:問題提出:(1)∵當(dāng)點(diǎn)A在線段BC上時(shí),線段AC有最小值,
∴線段AC的最小值=5﹣2=3
故答案為:3
問題探究
(2)(i)∵點(diǎn)A是OC的中點(diǎn),DO=CO=6=OP,
∴
∵CF=OC,
∴OF=2OC=2OP,
∴
∴,且∠AOP=∠FOP
∴△OAP~△OPF;
(ii)∵△OAP~△OPF
∴
∴PF=2AP
∵BP+2AP=BP+PF
∴當(dāng)點(diǎn)F,點(diǎn)P,點(diǎn)B三點(diǎn)共線時(shí),BP+2AP有最小值,最小值為BF
∴DO=CO=6,BD=1
∴BO=5,OF=12
∴BF==13
問題解決:
(3)如圖,以點(diǎn)B為圓心,3為半徑作圓交AB于點(diǎn)E,交BC于點(diǎn)F,點(diǎn)P為上一點(diǎn),連接BP,PC,PD,
在BC上截取BM=1,連接MD,過點(diǎn)D作DG⊥CB,
∵,且∠PBM=∠PBC,
∴△BPM∽△BCP
∴
∴PC=3PM
∵建橋PD和PC的總造價(jià)=3×PD+1×PC=3PD+×3PM=3(PD+PM)
∴當(dāng)點(diǎn)P在線段MD上時(shí),建橋PD和PC的總造價(jià)有最小值.
∵∠BCD=150°
∴∠DCG=30°,且DG⊥BC
∴DG=DC=,CG=DG=6
∴MG=BC+CG﹣BM=9+6﹣1=14
∴MD=
∴建橋PD和PC的總造價(jià)最小值=萬元
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△A1A2A3,△A3A4A5,△A5A6A7,△A7A8A9,…,都是等腰直角三角形,且點(diǎn)A1,A3,A5,A7,A9的坐標(biāo)分別為A1 (3,0),A3 (1,0),A5 (4,0),A7 (0.0),A9 (5.0),依據(jù)圖形所反映的規(guī)律,則A102的坐標(biāo)為( 。
A. (2,25)B. (2,26)C. (,﹣)D. (,﹣)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場按定價(jià)銷售某種商品時(shí),每件可獲利100元;按定價(jià)的八折銷售該商品5件與將定價(jià)降低50元銷售該商品6件所獲利潤相等.
(1)該商品進(jìn)價(jià)、定價(jià)分別是多少?
(2)該商場用10000元的總金額購進(jìn)該商品,并在五一節(jié)期間以定價(jià)的七折優(yōu)惠全部售出,在每售出一件該商品時(shí),均捐獻(xiàn)元給社會(huì)福利事業(yè),該商場為能獲得不低于3000元的利潤,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由我國完全自主設(shè)計(jì)、自主建造的首艘國產(chǎn)航母于2018年5月成功完成第一次海上試驗(yàn)任務(wù).如圖,航母由西向東航行,到達(dá)處時(shí),測得小島位于它的北偏東方向,且與航母相距80海里,再航行一段時(shí)間后到達(dá)B處,測得小島位于它的北偏東方向.如果航母繼續(xù)航行至小島的正南方向的處,求還需航行的距離的長.
(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年3月30日,四川省涼山州木里縣境內(nèi)發(fā)生森林火災(zāi),30名左右的撲火英雄犧牲,讓人感到痛心,也再次給我們的防火安全意識(shí)敲響警鐘.為了加強(qiáng)學(xué)生的防火安全意識(shí),某校舉行了一次“防火安全知識(shí)競賽”(滿分100分),賽后從中抽取了部分學(xué)生的成績進(jìn)行整理,并制作了如下不完整的統(tǒng)計(jì)圖表:
組別 | 成績x/分 | 組中值 |
A | 50≤x<60 | 55 |
B | 60≤x<70 | 65 |
C | 70≤x<80 | 75 |
D | 80≤x<90 | 85 |
E | 90≤x<100 | 95 |
請(qǐng)根據(jù)圖表提供的信息,解答下列各題:
(1)補(bǔ)全頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖;
(2)分?jǐn)?shù)段80≤x<90對(duì)應(yīng)扇形的圓心角的度數(shù)是 °,所抽取的學(xué)生競賽成績的中位數(shù)落在 區(qū)間內(nèi);
(3)若將每組的組中值(各組兩個(gè)端點(diǎn)的數(shù)的平均數(shù))代表各組每位學(xué)生的競賽成績,請(qǐng)你估計(jì)該校參賽學(xué)生的平均成績.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O外,∠ABC的平分線與⊙O交于點(diǎn)D,∠C=90°.
(1)CD與⊙O有怎樣的位置關(guān)系?請(qǐng)說明理由;
(2)若∠CDB=60°,AB=6,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,半徑為2的圓O與含30°角的直角三角板ABC的AB邊切于點(diǎn)A,將直角三角板沿BA邊所在的直線向右平移,當(dāng)平移到AC與圓O相切時(shí),該直角三角板的平移距離為( )
A. B. C. 1D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B,C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,得出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQAC.其中正確結(jié)論的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com