【題目】在下列條件中:①∠A+∠B=∠C;②∠A=∠B=2∠C;③∠A=∠B=a∠C;④∠A∶∠B∶∠C=1∶2∶3,能確定△ABC為直角三角形的條件有( )
A. 1個 B. 2個 C. 3個 D. 4個
【答案】B
【解析】
根據(jù)所給的4個條件分別求出4個條件下△ABC中的最大角的度數(shù),再進行判斷即可.
①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,
∴∠C=180°×=90°,
∴此時△ABC是直角三角形;
②∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,
∴5∠C=180°,解得∠C=36°,
∴∠A=∠B=72°,
∴此時△ABC不是直角三角形;
③∵∠A=∠B=a∠C,∠A+∠B+∠C=180°,
∴(2a+1)∠C=180°,解得∠C=,
∴∠A=∠B=,
∴此時△ABC中三個內(nèi)角的度數(shù)是不確定的,
∴不能確定△ABC是否是直角三角形;
④∵∠A∶∠B∶∠C=1∶2∶3,∠A+∠B+∠C=180°,
∴∠C=180°×=90°,
∴此時△ABC是直角三角形.
綜上所述,根據(jù)上述條件能夠確定△ABC是直角三角形的有2個.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為24厘米.甲、乙兩動點同時從頂點A出發(fā),甲以2厘米/秒的速度沿正方形的邊按順時針方向移動,乙以4厘米/秒的速度沿正方形的邊按逆時針方向移動,每次相遇后甲乙的速度均增加1厘米/秒且都改變原方向移動,則第四次相遇時甲與最近頂點的距離是______厘米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的直徑,C是⊙O上一點,過點C的直線交AB的延長線于點D,AE⊥DC,垂足為E,F(xiàn)是AE與⊙O的交點,AC平分∠BAE.
(1)求證:DE是⊙O的切線;
(2)若AE=6,∠D=30°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,點O在AB上,以點O為圓心,OA為半徑的圓恰好經(jīng)過點D,分別交AC,AB于點E,F(xiàn). (Ⅰ)試判斷直線BC與⊙O的位置關系,并說明理由;
(Ⅱ)若BD=2 ,BF=2,求陰影部分的面積(結果保留π).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=∠C=45°,點D在BC邊上,點E在AC邊上,且∠ADE=∠AED,連結DE.
(1)當∠BAD=60°,求∠CDE的度數(shù);
(2)當點D在BC(點B、C除外)邊上運動時,試寫出∠BAD與∠CDE的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,BC=8,P為AD上一點,將△ABP沿BP翻折至△EBP(點A落在點E處),PE與CD相交于點O,且OE=OD,則DP的長為( )
A. B. C. 1 D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D、E分別是邊BC、AC的中點,連接DE,將△EDC繞點C按順時針方向旋轉,記旋轉角為α.
(1)問題發(fā)現(xiàn)
①當α=0°時, =;②當α=180°時, = .
(2)拓展探究
試判斷:當0°≤α<360°時, 的大小有無變化?請僅就圖2的情形給出證明.
(3)問題解決
當△EDC旋轉至A,D,E三點共線時,直接寫出線段BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分別是∠AOC,∠BOD的平分線,∠MON等于________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com