分析 (1)設(shè)拋物線解析式為y=ax2+bx+c,然后把點A、B、C的坐標(biāo)代入函數(shù)解析式,利用待定系數(shù)法求解即可;
(2)根據(jù)圖形的割補法,可得二次函數(shù),根據(jù)拋物線的性質(zhì)求出第三象限內(nèi)二次函數(shù)的最值,然后即可得解;
(3)利用直線與拋物線的解析式表示出點P、Q的坐標(biāo),然后求出PQ的長度,再根據(jù)平行四邊形的對邊相等列出算式,然后解關(guān)于x的一元二次方程即可得解.
解答 解:(1)將A(-4,0),C(2,0)兩點代入函數(shù)解析式,得
$\left\{\begin{array}{l}{16a-4b-4=0}\\{4a+2b-4=0}\end{array}\right.$
解得$\left\{\begin{array}{l}{a=\frac{1}{2}}\\{b=1}\end{array}\right.$
所以此函數(shù)解析式為:y=$\frac{1}{2}$x2+x-4;
(2)∵M點的橫坐標(biāo)為m,且點M在這條拋物線上,
∴M點的坐標(biāo)為:(m,$\frac{1}{2}$m2+m-4),
∴S=S△AOM+S△OBM-S△AOB
=$\frac{1}{2}$×4×($\frac{1}{2}$m2+m-4)+$\frac{1}{2}$×4×(-m)-$\frac{1}{2}$×4×4
=-m2-2m+8-2m-8
=-m2-4m
=-(m+2)2+4,
∵-4<m<0,
當(dāng)m=-2時,S有最大值為:S=-4+8=4.
答:m=-2時S有最大值S=4.
(3)∵點Q是直線y=-x上的動點,
∴設(shè)點Q的坐標(biāo)為(a,-a),
∵點P在拋物線上,且PQ∥y軸,
∴點P的坐標(biāo)為(a,$\frac{1}{2}$a2+a-4),
∴PQ=-a-($\frac{1}{2}$a2+a-4)=-$\frac{1}{2}$a2-2a+4,
又∵OB=0-(-4)=4,
以點P,Q,B,O為頂點的四邊形是平行四邊形,
∴|PQ|=OB,
即|-$\frac{1}{2}$a2-2a+4|=4,
①-$\frac{1}{2}$a2-2a+4=4時,整理得,a2+4a=0,
解得a=0(舍去)或a=-4,
-a=4,
所以點Q坐標(biāo)為(-4,4),
②-$\frac{1}{2}$a2-2a+4=-4時,整理得,a2+4a-16=0,
解得a=-2±2$\sqrt{5}$,
所以點Q的坐標(biāo)為(-2+2$\sqrt{5}$,2-2$\sqrt{5}$)或(-2-2$\sqrt{5}$,2+2$\sqrt{5}$).
綜上所述,Q坐標(biāo)為(-4,4)或(-2+2$\sqrt{5}$,2-2$\sqrt{5}$)或(-2-2$\sqrt{5}$,2+2$\sqrt{5}$)時,使點P,Q,B,O為頂點的四邊形是平行四邊形.
點評 本題考查了二次函數(shù)綜合題,有待定系數(shù)法求二次函數(shù)解析式;利用圖形割補法得出二次函數(shù)的最值問題是解題關(guān)鍵;平行四邊形的對邊相等的性質(zhì),平面直角坐標(biāo)系中兩點間的距離的表示,綜合性較強,但難度不大,仔細分析便不難求解.
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-2 | B. | x=-1 | C. | x=1 | D. | x=2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 在同一平面內(nèi),過直線外一點有且只有一條直線與已知直線平行. | |
B. | 兩直線被第三直線所截,如果同位角相等,那么兩直線平行 | |
C. | 兩點確定一條直線 | |
D. | 內(nèi)錯角相等 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
乒乓球拍的數(shù)量(副) | 羽毛球拍的數(shù)量(副) | 總費用(元) | |
第一次購買 | 6 | 5 | 1140 |
第二次購買 | 3 | 7 | 1110 |
第三次購買 | 9 | 8 | 1062 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com