【題目】在下列圖形中,既是軸對(duì)稱圖形,又是中心對(duì)稱圖形的是(
A.直角三角形
B.正五邊形
C.正方形
D.平行四邊形

【答案】C
【解析】解:A、既不是軸對(duì)稱圖形,也不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤; B、是軸對(duì)稱圖形,不是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤;
C、既是軸對(duì)稱圖形,又是中心對(duì)稱圖形,故本選項(xiàng)正確;
D、不是軸對(duì)稱圖形,是中心對(duì)稱圖形,故本選項(xiàng)錯(cuò)誤.
故選C.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解軸對(duì)稱圖形(兩個(gè)完全一樣的圖形關(guān)于某條直線對(duì)折,如果兩邊能夠完全重合,我們就說這兩個(gè)圖形成軸對(duì)稱,這條直線就對(duì)稱軸),還要掌握中心對(duì)稱及中心對(duì)稱圖形(如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對(duì)稱;如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對(duì)稱圖形)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊ABCD中,E、F分別是AB、DC上的點(diǎn),且AE=CF,

(1)求證:ADE≌△CBF;

(2) 當(dāng)∠DEB=90°時(shí),試說明四邊形DEBF為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,在矩形中,AB=30cm,BC=60cm.點(diǎn)從點(diǎn)出發(fā),沿路線向點(diǎn)勻速運(yùn)動(dòng),到達(dá)點(diǎn)后停止;點(diǎn)從點(diǎn)出發(fā),沿路線向點(diǎn)勻速運(yùn)動(dòng),到達(dá)點(diǎn)后停止.若點(diǎn)同時(shí)出發(fā),在運(yùn)動(dòng)過程中,點(diǎn)停留了,圖②是兩點(diǎn)在折線上相距的路程S(cm)與時(shí)間(s)之間的部分函數(shù)關(guān)系圖象.求:

1P、Q兩點(diǎn)的運(yùn)動(dòng)速度及PC點(diǎn)的時(shí)間;

2)設(shè)的面積為,求之間的關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①是一個(gè)長為2m.寬為2n的長方形,沿圖中虛線用剪刀均勻分成四塊小長方形,然后按圖②形狀拼成一個(gè)正方形.

1)你認(rèn)為圖②中的陰影部分的正方形的邊長等于________?

2)請(qǐng)用兩種不同的方法求圖②中陰影部分的面積.(不用化簡)

方法1___________;方法2___________

3)由問題(2)你能寫出三個(gè)代數(shù)式:,,mn之間的一個(gè)等量關(guān)系.

答:______________

4)根據(jù)(3)題中的等量關(guān)系和完全平方公式,解決如下問題:

①已知:m+n5,mn=-3,求:(mn2的值;

②已知mn5,求mn的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,∠ACB90°,∠CAB30°,以線段AB為邊向外作等邊△ABD,點(diǎn)E是線段AB的中點(diǎn)連接CE并延長交線段AD于點(diǎn)F

1)求證四邊形BCFD為平行四邊形;

2)若AB6,求平行四邊形BCFD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們都知道,表示5與 -2之差的絕對(duì)值,實(shí)際上也可以理解為 5 與 -2兩數(shù)在數(shù)軸上所對(duì)的兩點(diǎn)之間的距離,則使得這樣的整數(shù)____個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:y=y1+y2 , y1與x成正比例,y2與x成反比例,當(dāng)x=2時(shí),y=﹣4;當(dāng)x=﹣1時(shí),y=5,求y與x的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,BO、CO分別平分∠ABC、ACB.若∠BOC=110°,則∠A=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC.

(1)證明:BC=DE;

(2)若AC=12,求四邊形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案