【題目】如圖①,在平行四邊形ABCD中,對(duì)角線AC、BD交于點(diǎn)O,ABAC,ABAC,過點(diǎn)AAEBD于點(diǎn)E.

(1)BC6,求AE的長(zhǎng)度;

(2)如圖②,點(diǎn)FBD上一點(diǎn),連接AF,過點(diǎn)AAGAF,且AGAF,連接GCAE于點(diǎn)H,證明:GHCH.

【答案】(1)AE=;(2)證明見解析.

【解析】

(1)根據(jù)題意可得:ABAC6,可得AO3,根據(jù)勾股定理可求BO的值,根據(jù)SABOAB×BOBO×AE,可求AE的長(zhǎng)度.

(2)延長(zhǎng)AEP,使APBF,可證△ABF≌△APC,可得AFPC.GAPC,由AGAF,AEBE可得∠GAH=∠BFA=∠APC,可證△AGH≌△PHC,結(jié)論可得.

解:(1)ABAC,ABAC,BC6

AB2+AC2BC2,

2AC272

ACAB6

∵四邊形ABCD是平行四邊形

AOCO3

RtAOB中,BO3

SABOAB×BOBO×AE

3×63×AE

AE

(2)如圖:延長(zhǎng)AEP,使APBF

∵∠BAC90°,AEBE

∴∠BAE+ABE90°,∠BAE+CAE90°

∴∠ABE=∠CAEABAC,BFAP

∴△ABF≌△APC

AFPC,∠AFB=∠APC

AGAF,AGAF

AGPC

∵∠GAH=∠GAF+FAE90°+FAE,∠AFB=∠AEB+FAE90°+FAE

∴∠GAH=∠AFB

∴∠AFB=∠GAH=∠APC,且AGPC,∠GHA=∠CHP

∴△AGH≌△CHP

GHHC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形是以為底邊的等腰三角形,點(diǎn)、分別是一次函數(shù)的圖象與軸、軸的交點(diǎn),點(diǎn)在二次函數(shù)的圖象上,且該二次函數(shù)圖象上存在一點(diǎn)使四邊形能構(gòu)成平行四邊形.

1)試求、的值,并寫出該二次函數(shù)表達(dá)式;

2)動(dòng)點(diǎn)沿線段,同時(shí)動(dòng)點(diǎn)沿線段都以每秒1個(gè)單位的速度運(yùn)動(dòng),問:

①當(dāng)運(yùn)動(dòng)過程中能否存在?如果不存在請(qǐng)說明理由;如果存在請(qǐng)說明點(diǎn)的位置?

②當(dāng)運(yùn)動(dòng)到何處時(shí),四邊形的面積最?此時(shí)四邊形的面積是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°AB=AC=10cm,點(diǎn)D△ABC內(nèi)一點(diǎn),∠BAD=15°AD=6cm,連接BD,將△ABD繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn),使ABAC重合,點(diǎn)D的對(duì)應(yīng)點(diǎn)E,連接DE,DEAC于點(diǎn)F,則CF的長(zhǎng)為________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】單靠記還不行,還得,姑且稱之為先死后活吧。讓學(xué)生把一周看到或聽到的新鮮事記下來,摒棄那些假話套話空話,寫出自己的真情實(shí)感,篇幅可長(zhǎng)可短,并要求運(yùn)用積累的成語(yǔ)、名言警句等,定期檢查點(diǎn)評(píng),選擇優(yōu)秀篇目在班里朗讀或展出。這樣,即鞏固了所學(xué)的材料,又鍛煉了學(xué)生的寫作能力,同時(shí)還培養(yǎng)了學(xué)生的觀察能力、思維能力等等,達(dá)到一石多鳥的效果。 如圖,由兩個(gè)相同的正方體和一個(gè)圓錐體組成一個(gè)立體圖形,其左視圖是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的邊ADy軸,垂足為點(diǎn)E,頂點(diǎn)A在第二象限,頂點(diǎn)By軸的正半軸上,反比例函數(shù)y=(k≠0,x>0)的圖象同時(shí)經(jīng)過頂點(diǎn)C,D.若點(diǎn)C的橫坐標(biāo)為5,BE=3DE,則k的值為( 。

A. B. 3 C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】應(yīng)我市創(chuàng)建文明城市要求,某小區(qū)業(yè)主委員會(huì)決定把一塊長(zhǎng),的矩形空地建成,花園小廣場(chǎng),設(shè)計(jì)方案如圖所示,陰影區(qū)域?yàn)榫G化區(qū)(四塊綠化區(qū)為全等的直角三角形),空白區(qū)域?yàn)榛顒?dòng)區(qū),且四周出口寬度-,其寬度不小于,不大于,預(yù)計(jì)活動(dòng)區(qū)造價(jià),綠化區(qū)造價(jià),設(shè)綠化區(qū)較長(zhǎng)直角邊為.

(1)求工程隊(duì)總造價(jià) ()的函數(shù)關(guān)系式,并求出x的取值范圍;

(2)如果業(yè)主委員會(huì)最多投資萬(wàn)元,能否完成全部工程?若能,請(qǐng)寫出為整數(shù)的所有工程方案;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校決定從甲、乙兩名同學(xué)中選拔一人參加“誦讀經(jīng)典”大賽,在相同的測(cè)試條件下,甲、乙兩人5次測(cè)試成績(jī)(單位:分)如下:

甲:79,86,8285,83.

乙:88,81,85,8180.

請(qǐng)回答下列問題:

1)甲成績(jī)的中位數(shù)是______,乙成績(jī)的眾數(shù)是______;

2)經(jīng)計(jì)算知,.請(qǐng)你求出甲的方差,并從平均數(shù)和方差的角度推薦參加比賽的合適人選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰直角△ABC中,CA=CB,點(diǎn)E為△ABC外一點(diǎn),CE=CA,且CD平分∠ACBAED,且∠CDE=60°.

(1)求證:△CBE為等邊三角形;

(2)若AD=5,DE=7,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EBC上一點(diǎn),連接AE,將矩形沿AE翻折,使點(diǎn)B落在CDF處,連接AF,在AF上取一點(diǎn)O,以點(diǎn)O為圓心,OF為半徑作⊙OAD相切于點(diǎn)P.AB=6BC=

1)求證:FDC的中點(diǎn).

2)求證:AE=4CE.

3)求圖中陰影部分的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案