【題目】如圖在RtABC中,ACB=90°AC=3,BC=4,點(diǎn)E、F分別在邊AB、AC上,將AEF沿直線EF折疊,使點(diǎn)A的對(duì)應(yīng)點(diǎn)D恰好落在邊BC上.若BDE是直角三角形,則CF的長為______

【答案】

【解析】

分兩種情況:①∠BED=90°,過點(diǎn)FFMAE,根據(jù)折疊性質(zhì)可知∠AEF=DEF=45°,設(shè)FC=a,則AF=3-a,在RtAMF中用a表示出AE,從而得到BE=5-AE,在RtBED中,根據(jù)三角函數(shù)用a表示BE,則構(gòu)造出關(guān)于a的方程;②∠BDE=90°,證明∠A=DFC,根據(jù)三角函數(shù)找到FCDF關(guān)系即可.

解:①當(dāng)∠BED=90°時(shí),過點(diǎn)FFMAE

根據(jù)折疊性質(zhì)可知∠AEF=DEF=45°,

設(shè)FC=a,則AF=3-a,在RtAMF中,

sinA=,∴MF==ME

cosA=,∴AM=

AE=AM+MF==DE

BE=AB-AE=5-

RtBED中,tanB=,∴BE=

5-=,解得a=;

②當(dāng)∠EDB=90°時(shí),

根據(jù)折疊性質(zhì)可知AF=FD,∠A=EDF

EDAC,∴∠EDF=DFC

∴∠A=DFC

cosA=cosDFC=,設(shè)FC=x,則AF=3-x=DF

,解得x=

綜上所述CF長為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:基本不等式a0,b0),當(dāng)且僅當(dāng)ab時(shí),等號(hào)成立.其中我們把叫做正數(shù)a、b的算術(shù)平均數(shù),叫做正數(shù)a、b的幾何平均數(shù),它是解決最大(。┲祮栴}的有力工具.

例如:在x0的條件下,當(dāng)x為何值時(shí),x+有最小值,最小值是多少?

解:∵x00即是x+≥2

x+≥2

當(dāng)且僅當(dāng)xx1時(shí),x+有最小值,最小值為2

請(qǐng)根據(jù)閱讀材料解答下列問題

1)若x0,函數(shù)y2x+,當(dāng)x為何值時(shí),函數(shù)有最值,并求出其最值.

2)當(dāng)x0時(shí),式子x2+1+≥2成立嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了讓同學(xué)們了解自己的體育水平,初二1班的體育劉老師對(duì)全班45名學(xué)生進(jìn)行了一次體育模擬測(cè)試(得分均為整數(shù)),成績滿分為10分,1班的體育委員根據(jù)這次測(cè)試成績,制作了統(tǒng)計(jì)圖和分析表如下:

初二1班體育模擬測(cè)試成績分析表

平均分

方差

中位數(shù)

眾數(shù)

男生

2

8

7

女生

7.92

1.99

8

根據(jù)以上信息,解答下列問題:

(1)這個(gè)班共有男生________人,共有女生________人;

(2)補(bǔ)全初二1班體育模擬測(cè)試成績分析表.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩位同學(xué)在足球場(chǎng)上游戲,兩人的運(yùn)動(dòng)路線如圖1所示,其中AC=DB,小王從點(diǎn)A出發(fā)沿線段AB運(yùn)動(dòng)到點(diǎn)B,小林從點(diǎn)C出發(fā),以相同的速度沿⊙O逆時(shí)針運(yùn)動(dòng)一周回到點(diǎn)C,兩人同時(shí)開始運(yùn)動(dòng),直到都停止運(yùn)動(dòng)時(shí)游戲結(jié)束,其間他們與點(diǎn)C的距離y與時(shí)間x(單位:秒)的對(duì)應(yīng)關(guān)系如圖2所示,結(jié)合圖象分析,下列說法正確的是( )

A. 小王的運(yùn)動(dòng)路程比小林的長

B. 兩人分別在秒和秒的時(shí)刻相遇

C. 當(dāng)小王運(yùn)動(dòng)到點(diǎn)D的時(shí)候,小林已經(jīng)過了點(diǎn)D

D. 秒時(shí),兩人的距離正好等于的半徑

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市進(jìn)行“三改一拆”治理違建的過程中,某小區(qū)拆除了自建房,改建綠地.如圖,自建房占地是邊長是8m的正方形ABCD,改建的綠地是矩形AEFG,其中點(diǎn)EAB上點(diǎn),GAD的延長線上,且DG=2BE,如果設(shè)BE的長為x(單位:m).

1)用含有x的代數(shù)式表示綠地AEFG的面積;

2)當(dāng)x取何值時(shí),綠地AEFG的面積為70m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某植物園有一塊足夠大的空地,其中有一堵長為a米的墻,現(xiàn)準(zhǔn)備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開.小俊設(shè)計(jì)了如圖甲和乙的兩種方案:

方案甲中AD的長不超過墻長;方案乙中AD的長大于墻長.

1)若a=6

①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長是多少米?

②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?

2)若0a6.5,哪種方案能圍成面積最大的矩形花圃?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人在山坡坡腳A處測(cè)得電視塔尖點(diǎn)C的仰角為60°,沿山坡向上走到P處再測(cè)得點(diǎn)C的仰角為45°,已知OA100米,山坡坡度=12,且O、A、B在同一條直線上.求電視塔OC的高度以及此人所在位置P的鉛直高度PB.(測(cè)傾器高度忽略不計(jì),結(jié)果保留根號(hào)形式)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90°,BA=BC.點(diǎn)DAB的中點(diǎn),連結(jié)CD,過點(diǎn)BBGCD,分別交CD、CA于點(diǎn)E、F,與過點(diǎn)A且垂直于AB的直線相交于點(diǎn)G,連結(jié)DF.給出以下四個(gè)結(jié)論:①;②點(diǎn)FGE的中點(diǎn);③AF=AB;SABC=5SBDF,其中正確的結(jié)論序號(hào)是(  )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=BC=2,∠ABC=90°,以AB為直徑的⊙OOC于點(diǎn)D,AD的延長線交BC于點(diǎn)E,則BE的長為______

查看答案和解析>>

同步練習(xí)冊(cè)答案